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ON THE GROWTH OF SOLUTIONS OF SOME

NON-LINEAR COMPLEX DIFFERENTIAL EQUATIONS

Dilip Chandra Pramanik, Jayanta Roy, and Kapil Roy†

Abstract. In this paper we study the growth of solutions of some
non-linear complex differential equations in connection to Brück con-
jecture using the theory of complex differential equation.

1. Introduction and main results

In this paper, by meromorphic function we shall always mean a mero-
morphic function in the complex plane. We adopt the standard nota-
tions in the Nevanlinna Theory of meromorphic functions as explained
in [4, 6, 10, 11]. It will be convenient to let E denote any set of positive
real numbers of finite linear measure, not necessarily the same at each
occurrence.

For any non-constant meromorphic function f(z), we denote by S(r, f)
any quantity satisfying S(r, f) = ◦(T (r, f)) as r → ∞, r 6∈ E, where
T (r, f) is the Nevanlinna characteristic function of f . A meromorphic
function a(z) is said to be small with respect to f(z) if T (r, a) = S(r, f).
We denote by S(f) the collection of all small functions with respect to
f . Clearly C ∪ {∞} ∈ S(f) and S(f) is a field over the set of complex
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numbers.

For any two non-constant meromorphic functions f and g, and a ∈
S(f) ∩ S(g), we say that f and g share a IM(CM) provided that f − a
and g − a have the same zeros ignoring(counting) multiplicities.

Let f(z) =
∑∞

n=0 anz
n be an entire function. We define by µ(r, f) =

max{|an|rn : n = 0, 1, 2, ...} the maximum term of f and by ν(r, f) =
max{m : µ(r, f) = |am|rm} the central index of f . In this paper we also
need the following definition:

Definition 1.1. Let f(z) be a non-constant entire function. Then
the order σ(f), the lower order µ(f) and the hyper-order σ2(f) of f(z)
are defined as follows:

σ(f) = lim sup
r→+∞

log T (r, f)

log r
= lim sup

r→+∞

log logM(r, f)

log r

µ(f) = lim inf
r→+∞

log T (r, f)

log r
= lim inf

r→+∞

log logM(r, f)

log r

σ2(f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM(r, f)

log r
,

where and in the sequel

M(r, f) = max
|z|=r
|f(z)| .

In 1976, Rubel and Yang [9] proved that if a non-constant entire func-
tion f and its derivative f ′ share two distinct finite complex numbers
CM, then f ≡ f ′. What will be the relation between f and f ′, if an
entire function f and its derivative f ′ share one finite complex number
CM ?

In 1996 Brück [1] made the following conjecture:

Conjecture 1.1. Let f be a non-constant entire function satisfying
σ2(f) < ∞, where σ2(f)is not a positive integer. If f and f ′ share one
finite complex number a CM, then

f ′ − a
f − a

= c,

for some finite complex number c 6= 0.
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In the same paper, Brück showed that the conjecture is true when
a = 0. He also proved that the conjecture is true for a 6= 0 provided
that f satisfies the additional assumption N(r, 0; f ′) = S(r, f) and in
this case the order restriction on f can be omitted.

Gundersen and Yang [3] proved that the conjecture is true for func-
tions of finite order.

Theorem 1.1. Let f be a non-constant entire function of finite order.
If f and f ′ share one finite complex number a CM, then

f ′ − a
f − a

= c,

for some finite complex number c 6= 0.

In 2009, Chang and Zhu [2] proved that Theorem 1.1 remains valid
when the complex number a is replaced by a function.

Theorem 1.2. Let f be a non-constant entire function of finite order
and a = a(z)(6≡ 0) be an entire function such that σ(a) < σ(f) <∞. If
f and f ′ share a CM, then

f ′ − a
f − a

= c,

for some finite complex number c 6= 0.

In 2016, Li and Yi [8] investigated the Brück conjecture and proved
that Theorem 1.2 remains true when f ′ is replaced by a linear differential
polynomial of f , namely L(f) = f (k)+ak−1f

(k−1)+...+a1f
′+a0f , where k

is a positive integer and ak−1, ..., a0 are complex constants. They proved
the following result:

Theorem 1.3. Let f be a non-constant entire function such that
σ(f) < ∞, and let a( 6≡ 0) be an entire function such that σ(a) < σ(f).
If f − a and L[f ]− a share 0 CM, where L[f ] is defined as above, then
σ(f) = 1 and one of the following two cases will occur:

(i) L[f ]− a = c(f − a), where c is some non-zero constant.

(ii) f is a solution of the equation L[f ]− a = (f − a)ep1z+p0 such that
σ(f) = µ(f) = 1, where not all a0, a1, ..., ak−1 are zeros, p1 6= 0 and p0

are complex numbers.
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Question 1.1. It is an interesting question to investigate that what
will happen if we replace the linear differential polynomial by a non-
linear differential polynomial in Theorem 1.3.

In this connection we need the following definition:

Let n0j, n1j, n2j, ..., nkj are non-negative integers. The expression

Mj [f ] = fn0j
(
f (1)
)n1j

(
f (2)
)n2j

...
(
f (k)
)nkj

,

is called a differential monomial generated by f of degree d(Mj) =
k∑
i=0

nij

and weight ΓMj
=

k∑
i=0

(i+ 1)nij. The sum

P [f ] =
l∑

j=1

ajMj [f ] ,

is called a differential polynomial generated by f of degree d(P ) =
max {d(Mj) : 1 ≤ j ≤ l} and weight ΓP = max

{
ΓMj

: 1 ≤ j ≤ l
}

, where
aj is complex constant for j = 1, 2, ..., l. The numbers dP = min {d(Mj) :
1 ≤ j ≤ l} and k (the highest order of the derivative of f in P [f ]) are
called respectively the lower degree and the order of P [f ]. P [f ] is said
to be homogeneous differential polynomial of degree d if dP = dP = d.
P [f ] is called a linear differential polynomial generated by f if dP = 1.
Otherwise, P [f ] is called non-linear differential polynomial. We denote

by Qj = ΓMj
− d(Mj) =

∑k
i=1 i.nij for 1 ≤ j ≤ l.

In this paper we prove the following theorems which improve and
generalizes Theorems 1.1, 1.2 and 1.3.

Theorem 1.4. Let f be a non-constant entire function with σ(f) <
∞ and let a( 6≡ 0) be entire function such that σ(a) < σ(f). If fd(z)−a(z)

and P [f ]− a(z) share 0 CM , where P [f ] = M [f ] +
l∑

j=1

ajMj [f ] is a dif-

ferential polynomial of f of degree d, and M [f ] is a differential monomial
of f of degree d. Then σ(f) = 1 and one of the following two cases will
occur:
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(i) f is a solution of the equation P [f ] − a(z) = c(fd − a(z)), where
c is some non-zero constant.

(ii) f is a solution of the equation P [f ] − a(z) = (fd − a(z))ep1z+p0

such that σ(f) = µ(f) = 1, where not all a1, a2,..., al are zeros, p1 6= 0
and p0 are complex numbers.

Proceeding as in the proof of Theorem 1.4 of this paper, we can prove
the following theorem.

Theorem 1.5. Let f be a non-constant entire function such that
σ(f) <∞ and let a( 6≡ 0) and β be entire functions such that max{σ(a), σ(β)}
< σ(f). If fd(z) − a(z) and P [f ] + β(z) − a(z) share 0 CM , where

P [f ] = M [f ] +
l∑

j=1

ajMj [f ] is a differential polynomial of f of degree d,

and M [f ] is a differential monomial of f of degree d. Then σ(f) = 1
and one of the following two cases will occur:

(i) f is a solution of the equation P [f ]+β(z)−a(z) = c(fd(z)−a(z)),
where c is some non-zero constant.

(ii) f is a solution of the equation P [f ] + β(z) − a(z) = (fd(z) −
a(z))ep1z+p0 such that σ(f) = µ(f) = 1, where not all a1, a2,..., al are
zeros, p1 6= 0 and p0 are complex numbers.

From Theorem 1.4 we get the following corollary:

Corollary 1.1. Let f be a non-constant entire function such that
σ(f) < ∞ and let a( 6≡ 0) be entire function such that σ(a) < σ(f). If
fd(z)− a(z) and M [f ]− a(z) share 0 CM , where M [f ] is a differential
monomial of f of degree d. Then σ(f) = 1 and f is a solution of the
equation M [f ]−a(z) = c(fd−a(z)), where c is some non-zero constant.

From Theorem 1.5 we get the following corollary:

Corollary 1.2. Let f be a non-constant entire function such that
σ(f) <∞ and let a(6≡ 0) and β be entire functions such that max{σ(a), σ(β)}
< σ(f). If fd(z)−a(z) and M [f ]+β(z)−a(z) share 0 CM , where M [f ]
is a differential monomial of f of degree d. Then σ(f) = 1 and f is a
solution of the equation M [f ] + β(z)− a(z) = c(fd(z)− a(z)), where c
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is some non-zero constant.

The following is the supportive example of (i) of Theorem 1.4.

Example 1.1. Let f(z) = 1− ez and P [f ] = f ′f + f . Then σ(f) = 1
and P [f ]− a(z) = c(f 2(z)− a(z)), where c = 1 and a(z) = z + 1.

The following is the supportive example of (ii) of Theorem 1.4.

Example 1.2. Let f(z) = 1+ez and P [f ] = f 2−(f ′′)2−f ′+2. Then
P [f ]− 1 and f 2 − 1 share 0 CM, σ(f) = 1 and P [f ]− 1 = (f 2 − 1)e−z.

Example 1.3. Let f(z) = a(z) = ez and P [f ] = f ′2 − f 2 + 2f − 1.
Then f 2−a and P [f ]−a share 0 CM and σ(f) = σ(a) = 1 but P [f ]−a =
e−z(f 2 − a). This example shows that the condition “σ(a) < σ(f)” in
(i) of Theorem 1.4 is the best possible.

Theorem 1.6. In Theorem 1.4 if we replace the condition “σ(a) <
σ(f)” by “σ(a) < µ(f)” and all other conditions remains the same, then
also the conclusion of the theorem is true.

Theorem 1.7. In Theorem 1.5 if we replace the condition “ max{σ(a), σ(β)}
< σ(f)” by “ max{σ(a), σ(β)} < µ(f)” and all other conditions remains
the same, then also the conclusion of the theorem is true.

From Theorem 1.6 we get the following corollary:

Corollary 1.3. Let f be a non-constant entire function such that
σ(f) < ∞ and let a 6≡ 0 be entire function such that σ(a) < µ(f). If
fd(z)− a(z) and M [f ]− a(z) share 0 CM , where M [f ] is a differential
monomial of f of degree d. Then σ(f) = 1 and f is a solution of the
equation M [f ]−a(z) = c(fd−a(z)), where c is some non-zero constant.

From Theorem 1.7 we get the following corollary:

Corollary 1.4. Let f be a non-constant entire function such that
σ(f) <∞ and let a 6≡ 0 and β be entire functions such that max{σ(a), σ(β)}
< µ(f). If fd(z)−a(z) and M [f ]+β(z)−a(z) share 0 CM , where M [f ]
is a differential monomial of f of degree d. Then σ(f) = 1 and f is a
solution of the equation M [f ] + β(z)− a(z) = c(fd(z)− a(z)), where c
is some non-zero constant.
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2. Preparatory Lemmas

In this section we state some lemmas needed in the sequel.

Lemma 2.1. [6] Let f(z) be a transcendental entire function, ν(r, f)
be the central index of f(z). Then there exists a set E ⊂ (1,+∞)
with finite logarithmic measure such that for some point z satisfying
|z| = r 6∈ [0, 1] ∪ E and |f(z)| = M(r, f), we get

f (j)(z)

f(z)
=

{
ν(r, f)

z

}j
(1 + o(1)) , for j ∈ N.

Lemma 2.2. [5] Let f(z) be an entire function of finite order σ(f) =
σ < +∞ and let ν(r, f) be the central index of f . Then

σ(f) = lim sup
r→+∞

log ν(r, f)

log r

and

µ(f) = lim inf
r→+∞

log ν(r, f)

log r
.

And if f is a transcendental entire function of hyper order σ2(f), then

lim sup
r→+∞

log log ν(r, f)

log r
= σ2(f)

Lemma 2.3. [7] Let f(z) be a transcendental entire function and let
E ⊂ [1,+∞) be a set having finite logarithmic measure. Then there ex-
ists

{
zn = rne

iθn
}

such that |f(zn)| = M(rn, f), θn ∈ [0, 2π) , lim
n→+∞

θn =

θ0 ∈ [0, 2π) , rn 6∈ E and if 0 < σ(f) < +∞, then for any given ε > 0
and sufficiently large rn,

rσ(f)−ε
n < ν(rn, f) < rσ(f)+ε

n .

Lemma 2.4. ( [6], Corollary 2.3.4) Let f be a transcendental mero-
morphic function and k be a positive integer. Then m(r, f (k)/f) =
S(r, f), outside of a possible exceptional set E of finite linear measure,
and if f is of finite order of growth, then m(r, f (k)/f) = O(log r).

Lemma 2.5. [8] Let f(z) =
∑∞

n=0 anz
n be an entire function, let

µ(r, f) be the maximum term of f , and let ν(r, f) be the central index.
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Then for 0 < r < R we have

M(r, f) < µ(r, f)

{
ν(R, f) +

R

R− r

}
.

Lemma 2.6. ( [6], Lemma 1.1.2) Let g : (0,+∞)→ R, h : (0,+∞)→
R be monotone increasing functions such that g(r) ≤ h(r) outside of an
exceptional set F of finite logarithmic measure. Then for any α > 1,
there exists r0 > 0 such that g(r) ≤ h(rα) for all r > r0.

3. Proof of Main Theorems

In this section we present the proof of the main result of the paper.

Proof of Theorem 1.4:

Since fd − a and P [f ]− a share 0 CM , we get

(3.1)
P [f ]− a
fd − a

= eφ,

where φ is an entire function. Again from σ(a) < σ(f), we have σ(f) > 0,
which implies that f is a transcendental entire function.

Now, we consider the following two cases:

Case I:

(3.2) lim inf
r→∞

log ν(r, f)

log r
> 1.

Then from (3.2) and Lemma 2.2, we get

(3.3) µ(f) = lim inf
r→∞

log ν(r, f)

log r
> 1.

Since f is a transcendental entire function, we have

(3.4) M(r, f)→∞ as r →∞.

Again since f is a transcendental entire function, by Lemma 2.1 there
exist subset Fj ⊂ (1,∞) (1 ≤ j ≤ n) with finite logarithmic measure
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such that for some point zr = reiθ(r), (θ(r) ∈ [0, 2π)) satisfying |zr| =
r 6∈ Fj and M(r, f) = |f(zr)|, we have
(3.5)

f (j)(zr)

f(zr)
=

(
ν(r, f)

zr

)j
{1+o(1)} (1 ≤ j ≤ n), as r 6∈ ∪nj=1Fj and r →∞.

By Definition 1.1, Lemma 2.6, Definition 1.1.1 and Theorem 1.1.3
from [12] and the assumption σ(a) < σ(f), there exists an infinite se-
quence of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where
rn ∈ I\ ∪nj=1 Fj, I ⊆ R+ is a subset with logarithmic measure

∫
I
dt
t

=∞
such that

(3.6) lim
rn→∞

log logM(rn, f)

log rn
= σ(f)

and

(3.7) lim
rn→∞

M(rn, a)

M(rn, f)
= 0.

Since

(3.8)
P [f ]− a
fd − a

=

P [f ]
fd
− a

fd

1− a
fd

,

using (3.2),(3.4)-(3.7) in (3.8) we get

(3.9)
P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)
= R

(
ν(rn, f)

zrn

)Q
{1 + o(1)}, as rn →∞,

where Q = max{ΓM − d(M) : M is a monomial in P [f ]} and R is a
complex number.

From (3.9), we have
(3.10)

log

∣∣∣∣P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)

∣∣∣∣ = Q{log ν(rn, f)− log rn}+ o(1), as rn →∞.
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From (3.1), Lemma 2.4 and the condition σ(a) < σ(f) <∞, we get

T (r, eφ) ≤ 2T (r, f) +O(log r)

⇒ log T (r, eφ) ≤ log T (r, f) +O(log log r)

⇒ log T (r, eφ)

log r
≤ log T (r, f)

log r
+O(1)

⇒ σ(eφ) ≤ σ(f) <∞ as r →∞,(3.11)

which implies that φ is a polynomial.
Let

(3.12) φ = pmz
m + pm−1z

m−1 + ...+ p1z + p0,

where p0, p1, ..., pm−1, pm are complex constants with pm 6= 0.

It follows from (3.12) that lim|z|→∞ |φ(z)/pmz
m| = 1 and |φ(z)/pmz

m| >
1
e

as |z| > r0, when r0 is a sufficiently large positive number. From this
and (3.1), we get
(3.13)

m log |z|+log |pm|−1 ≤ log |φ(z)| ≤ | log log eφ| =
∣∣∣∣log log

P [f ]− a
fd − a

∣∣∣∣ as |z| → ∞.

From (3.9), (3.13), Lemma 2.2 and the condition σ(f) <∞, we get

m log |zrn|+ log |pm| − 1

≤
∣∣∣∣log log

P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)

∣∣∣∣
=

∣∣∣∣log

∣∣∣∣log
P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)

∣∣∣∣∣∣∣∣+ i arg

(
log

P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)

)
≤

∣∣∣∣log

∣∣∣∣log
P [f ](zrn)− a(zrn)

fd(zrn)− a(zrn)

∣∣∣∣∣∣∣∣+ 2π

≤ log log ν(rn, f) + log log rn +O(1)

≤ 2 log log rn +O(1), as rn →∞
⇒ m log |zrn|+ log |pm| − 1 ≤ 2 log log rn +O(1), as rn →∞(3.14)

which is impossible. Thus φ is a constant and so (3.9) becomes

(3.15)

(
ν(rn, f)

zrn

)Q
{1 + o(1)} = c as rn →∞,
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where c is some non-zero constant.

From (3.15), we get

(3.16) lim
rn→∞

log ν(rn, f)

log rn
= 1.

By Lemma 2.5, we know that
(3.17)

M(rn, f) < µ(rn){ν(2rn, f) + 2} = |aν(rn,f)|rν(rn,f)
n {ν(2rn, f) + 2}.

Since |aj| < M1, for all non-negative integer j and some constant
M1 > 0, we get from (3.17) that

(3.18) log logM(rn, f) ≤ log ν(rn, f)+log log ν(2rn, f)+log log rn+C1,

where C1 > 0 is a suitable constant.

From Lemma 2.2 and the condition σ(f) <∞, we get

(3.19) log ν(2rn, f) < {1 + o(1)}(log rn + log 2) as r →∞.
From (3.16), (3.18) and (3.19) we get

log logM(rn, f) ≤ log ν(rn, f) + 2 log log rn + o(1)

≤ log ν(rn, f){1 + o(1)}, as rn →∞

⇒ log logM(rn, f)

log rn
≤ log ν(rn, f)

log rn
.(3.20)

By (3.6), (3.16) and (3.20), we get

(3.21) σ(f) ≤ 1.

which is a contradiction by the fact µ(f) ≤ σ(f) and (3.3).

Case II: Suppose that

(3.22) lim inf
r→∞

log ν(r, f)

log r
≤ 1.

Then from (3.21) and Lemma 2.2, we get

(3.23) µ(f) ≤ 1.

We consider the following two subcases:
Subcase I: Suppose that

(3.24) σ(f) > 1.
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By (3.24), Definition 1.1, Lemma 2.6, Definition 1.1.1, Theorem 1.1.3
from [12] and the assumption σ(a) < σ(f), there exists an infinite se-
quence of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where
rn ∈ I\∪nj=1Fj, I ⊆ R+ is a subset with logarithmic measure

∫
I
dt
t

=∞,
such that (3.6) and (3.7) hold. Next proceeding in the same manner an
in Case I we get (3.21), which contradicts (3.24).

Subcase II: Suppose that

(3.25) σ(f) ≤ 1.

We will show that

(3.26) σ(f) = 1.

Suppose that

(3.27) σ(f) < 1.

Then from (3.27) and (3.11), we get σ(eφ) ≤ σ(f) < 1, which implies
that φ is a constant and so is eφ. Thus (3.1) becomes

(3.28)
P [f ]− a
fd − a

= c,

where c is some non-zero constant.

Re-writing (3.28), we get

M [f ]

fd
+

l∑
j=1

aj
Mj[f ]

fd
− a

f

1

fd−1
= c

(
1− a

f

1

fd−1

)
.(3.29)

By Lemma 2.6, Definition 1.1.1, Theorem 1.1.3 from [12] and the
assumption σ(a) < σ(f), there exists an infinite sequence of points zrn =
rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where rn ∈ I\∪nj=1Fj, I ⊆ R+ is

a subset with logarithmic measure
∫
I
dt
t

= ∞, such that (3.6) and (3.7)
hold and from 3.29 we have
(3.30)(
ν(rn, f)

zrn

)ΓM−d(M)

{1+o(1)}+
l∑

j=1

aj

(
ν(rn, f)

zrn

)Qj
.

1

f(zrn)d−d(Mj)
{1+o(1)} = c

as rn →∞.

From Lemma 2.3, we get

(3.31) ν(rn, f) ≤ rσ(f)+ε0
n ,
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as rn ≥ R0, where ε0 = (1− σ(f))/2 and R0 is sufficiently large positive
number.

From (3.27) and (3.31), we get

(3.32) lim
rn→∞

∣∣∣∣ν(rn, f)

zrn

∣∣∣∣Qj ≤ lim
rn→∞

r
(
σ(f)−1

2
)Qj

n = 0 for 1 ≤ j ≤ l

and

(3.33) lim
rn→∞

∣∣∣∣ν(rn, f)

zrn

∣∣∣∣ΓM−d(M)

≤ lim
rn→∞

r
(
σ(f)−1

2
)(ΓM−d(M))

n = 0.

From (3.30), (3.32) and (3.33) we get c = 0, which is a contradiction.
Therefore we get

(3.34) σ(f) = 1.

From (3.11) and (3.34) we get σ(eφ) ≤ 1 and it follows that φ is a
polynomial of degree deg(φ) ≤ 1. If φ is a constant, then from (3.1) we
get the conclusion (i) of Theorem 1.2.

Next suppose that φ is a polynomial degree deg(φ) = 1. Thus

φ(z) = p1z + p0,

where p1 6= 0 and p0 are complex number.

First of all we prove that µ(f) = 1.
From (3.34) it follows that µ(f) ≤ 1.
Let us suppose that µ(f) < 1.
By Definition 1.1 there exists an infinite sequence of positive numbers

rn such that

lim
rn→∞

log T (rn, f)

log rn
= µ(f).

Again from (3.11), we get

µ(eφ) ≤ lim
rn→∞

log T (rn, e
φ)

log rn
≤ lim

rn→∞

log T (rn, f)

log rn
= µ(f) < 1.

⇒ µ(eφ) < 1,

which is a contradiction. Therefore µ(f) = 1.
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Secondly, we will prove that not all a1, a2, ..., al are zero. Suppose
that aj = 0 for 1 ≤ j ≤ l, then we have

(3.35) M [f ]− a(z) = (fd − a(z))ep1+p0 .

From Definition 1.1, Lemma 2.6, Definition 1.1.1, Theorem 1.1.3
from [12] and the assumption σ(a) < σ(f), there exists an infinite se-
quence of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where
rn ∈ I\∪nj=1Fj, I ⊆ R+ is a subset with logarithmic measure

∫
I
dt
t

=∞,
such that (3.6) and (3.7) holds.

From (3.6), (3.7) and (3.35), we get

(3.36)

(
ν(rn, f)

zrn

)ΓM−d(M)

{1 + o(1)} = ep1z+p0 as rn →∞.

From (3.36), we get

|p1|rn − |p0| = |p1||zrn| − |p0|
≤ |p1zrn + p0|
≤

∣∣ log ep1zrn+p0
∣∣+O(1)

≤ (ΓM − d(M))| log ν(rn, f)− log rn|+O(1)

≤ (ΓM − d(M)){σ(f) + 2} log rn +O(1) as rn →∞,
which is a contradiction, since p1 6≡ 0. This completes the proof of (ii)
of Theorem 1.4.
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