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ON THE GENERALIZED BANACH SPACES

BunvyEON KANG

ABSTRACT. For any non-negative real number ¢j, we shall introduce
a concept of the ey-Cauchy sequence in a normed linear space V'
and also introduce a concept of the eg-completeness in those spaces.
Finally we introduce a concept of the generalized Banach spaces with
these concepts.

1. Introduction

In this section, we briefly introduce the concept of the generalized
limits of the multi-valued sequences and functions on the normed spaces
which we need later. Let’s denote by B(z,¢) (resp. B(x,¢€)) the open
(resp. closed) ball in the normed linear space V' with radius € and center
at x.

DEFINITION 1.1. Let {z,} be a multi-valued infinite sequence of el-
ements of the normed linear space (V|| - ||). And let ¢g > 0 be a fixed
non-negative real number. If a subset S of V satisfies the following con-
dition, we call that the ¢y generalized limit (or €-limit) of {z,} as n

goes to oo is S, and we denote it by :En =S5 : Sis the set of all

n—-ao0
the vectors a € V satisfying the condition

Ve > €y, K € N s.t.(V¥n € N)n > K, (Vz,) = ||z, — a| <e.
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If the set S in the definition above is not empty we say that {z,}
is an eg-convergent sequence or ey-converges to S. We also define that
any member o € S is an approximate value of the generalized limit of
{z,} with the limit of the error ¢y. Then we can regard o € S as the
approximate value of the limit of {z,,} whether {z,} converges in the
usual sense or not. From now on, V' # {0} denotes a normed linear
space.

DEFINITION 1.2. Let {z,,} be a multi-valued infinite sequence in V.
We define that {z,} is ultimately bounded if and only if there exist real
numbers K and M such that (Vn € N)n > K, Vx,, = ||z, < M.

LEMMA 1.3. (Representation) Let {z,,} be a multi-valued infinite se-
quence in the normed linear space V' # {0} which satisfies the Heine-
Borel property. And let ¢y > 0 be a non-negative real number. Suppose

that {x,} is ultimately bounded. If :L'n = S then S is a convex

n——aoo

and compact subset of V' such that S = QSLE((I, €o). Here
ae

SSL=SSL({x,}) = {a e V|FH{z,, } < {z.} s.t.klim Tp, = Q}

and {z,,} < {z,} means that {z,, } is a single-valued subsequence of

Proof. (C) Let any element 8 € S # () be given. Then

Ve > €9, 3K, € N s.t.(Vn € N)n > Ky, (Va,) = ||z, — 8| < €0 + € —260.
If o € SSL is any element, then there exists a single-valued and conver-

gent subsequence {z,, } such that klim Ty, = . Thus we have
—00

€ — €p

Ve > EO,EIKQ eN St(Vk’ € N)]{? > Ky = ||£L‘nk — Oé” < 9

Choosing a natural number K = max{K;, K}, we have

18— all

Hﬁ = Tng T Ty — O‘H
< B = 2ngell + ll2n, — al
€ — € € — €

< = €.
60+2+2 €

Since € > ¢y was arbitrary, we have |3 — a| < €. That is, 8 € B(a, ¢).
Since v € SSL was arbitrary, we have g € QSLB(a, €0). Since § € S
ac




Generalized Banach spaces 709

was also arbitrary, we have S C QSLB(a,eo). (D) Since V' # {0},
ac

S # V since {z,} is ultimately bounded. In order to show that the
opposite inclusion is also satisfied, let 5 ¢ S be any element of V' —S # ().
Then we have

de; > € s.t.(Vk € N,3ny, € N, 3z, s.t. ||zn, — 8] > €).

Since {z,} is ultimately bounded, {z,,} is a bounded sequence in V.
Thus {z,, : k € N} is a subset of some closed bounded ball B(x,r) for
some z € V and r > 0. Since V satisfies the Heine-Borel property, the
closed ball B(z,r) is a compact subset of V. Since {z,,} is a sequence
in the compact set B(x,7), there is a convergent subsequence {n,, } of

{z,, }. Hence we may assume that lim z,, = aq for some oy € V. Then
k p—00 kp

we have, for such an €; > ¢,

IK €N sit.p> K = ||z, —al| < 2 ;60
Therefore, we have
18—l = I8 —zn,, + Tn,, — ol
> 18 =z | = llzn,, — aoll
€1 —€ €1+ €
> € — = :
T 2

Since the last quantity satisfies the relation 51"550 > €0, this implies that

B¢ B(ag, €). Since ag € SSL, this also implies that 3 ¢ QSLE(Q, €0)-
ac

H n B cs. C tl have S = N B :
ence M (v, €0) C onsequently, we have . (a, €)

On the other hand, since S is the intersection of the closed balls B(a, €)
which are bounded, closed and convex, S is convex and compact in V. Fi-

nally, if S = ) then S is clearly convex and compact, and QSLE(Q, €) C
[e1S

S=10. O

Note in the lemma above that if SSL = {a} for some a € V then we

have .CEn = B(a, ¢) for all ¢y > 0.

n—aoo

LEMMA 1.4. Let {z,} be a multi-valued infinite sequence in the
normed linear space V which satisfies the Heine-Borel property and
€0 > 0. Suppose that {x,} is ultimately bounded. Then the set SSL
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of all the single-valued subsequential limits of {x,} is a non-empty and
compact subset of V.

Proof. The ultimate boundedness of the sequence {x,} implies that
the set SSL is non-empty and bounded since V' satisfies the Heine-Borel
property. In order to verify that SSL is a closed subset of V| let any
member o € SSL be given. If v is an element of SSL then we are done.
Suppose that o € SSL. Then o must be an accumulation point of the
set SSL. By means of choosing the open balls B(w, 1) for all natural
numbers k € N, we have a single-valued sequence {ax} € SSL such that

klim ar = «a. Since the first term oy of the sequence {a;} is an element
—00

of SSL, there is one value, say x,,, of the multi-valued term z,,, in {z,}
such that ||z, —aq]] < 1. Similarly, since ay € SSL, there is one value,
say Tp,, of the multi-valued term x,, in {z,} such that ||z, — | < 3
and ny > ny. By applying those methods, we can inductively choose a
single-valued subsequence {z,,} of {z,} such that ||z, — o < 3 for
all natural number k € N. Since ||x,, — | < ||zn, — arll + ||ax — ],

if we take the limit on both sides we have klim Zy, = a. Thus we have
—00

a € SSL which completes the proof. m

DEFINITION 1.5. Let D be a subset of a normed space V and f : D —
W be a multi-valued function into the normed space W. We define that
f is eg-uniformly continuous on D if and only if we have

Ve > €,30 >0 s.t. (Va,y € D)||lx —y| <,Vf(x),Vf(y)
= |[[f(z) = fyll <e

2. The generalized Banach space

In this section, we define the concept of the ¢y generalized complete-
ness of a set and the concept of the ¢, generalized Banach space. In
this section, V' denotes a normed linear space and ¢, denotes a fixed
non-negative real number.

DEFINITION 2.1. Let {x,,} be a multi-valued sequence in V. We define
that {x,} is an ¢)-Cauchy sequence if and only if

Ve > €y, K € Ns.t.(Ym,n)m,n > K,Vx,,,Vr, = ||v, — x| <e.

Note that it is easy to prove that any €,-Cauchy sequence is ultimately
bounded.
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DEFINITION 2.2. Let S be any non-empty subset of V. Then we

define that S is ey)-complete in V' if and only if xn NS # () for

n—-—ao0
any ¢-Cauchy sequence {z,,} in S.

LEMMA 2.3. Let V' be a normed linear space which satisfies the Heine-
Borel property, and let {z,,} be an €,-Cauchy sequence in V. Then we

have
SSL C|eo — limr,,.

n—aoo
Proof. Let {x,} be the given ¢)-Cauchy sequence in V. Then we have

Ve > ¢, dK € N s.t. (Ym,n)m,n > K,Vo,,V,

€ — €
= ||zm — x| < e+

since €9 + <5 > €g. Since V satisfies the Heine-Borel property, we have

SSL # (). Suppose that « € SSL. Then there is a single-valued and

convergent subsequence {z,,} of {x,} such that klim T, = a. Since
—00

ni > k, we have, by replacing x,, to z,,,

Ve >¢,dK € N st. (Ym,k)m, k> KV,
€ — €

= ||Tm — X, || < €0+

For each fixed term number m and each value of z,,, by taking the limit
as k goes to oo, we have

Ve > ¢, dK € N s.t. (Ym)m > K,Vz,,

€—E€ €+ €
— lzm —af <e+ 20: 2°<e.
Thus we have o € xn. Consequently, SSL C ZBn. n
n—oo n—~oo

COROLLARY 2.4. Let {x,} be an ¢y-Cauchy sequence in a normed

linear space V' which satisfies the Heine-Borel property. If we denote by
hull(SSL) the convex hull of SSL then hull(SSL) # () and

hull(SSL) C xn = 0. Bla,«).

Proof. Since the convex hull of SSL is the smallest convex subset of
V' which contains the set SSL, this corollary follows from lemmas 1.3,
2.3 and the convex property of the ey-limit. n
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LEMMA 2.5. Let {z,} be an ¢)-Cauchy sequence in a normed linear
space V. If a, f € SSL then ||a — §|| < €. Hence the diameter of SSL
is less than or equal to €.

Proof. Since {x,} is an €-Cauchy sequence in V', we have

Ve > ¢, dK € N s.t. (Ym,n)m,n > K,Vo,,V,

€ — €
= ||zm — x| <€+

since €g + 5 > €. And since o, € SSL, there are two single-

valued and convergent subsequences {x,, } and {z,, } of {x,} such that
lim z,,, = o and lim z,,, = B. Since my, n; > k, we have
k—oo k—o0

Ve > €9, 3K € Ns.t.(Vh)k > K = |2, — 2, || < €0 + ——0

If we take the limit as k£ goes to oo, we have

€ — € €+ ¢€p
o — <e€ = < €.
fo—pl <ot 0=
Since € > €y was arbitrary, this implies that ||o — 8]] < €. Hence the
diameter of SSL is less than or equal to €. O

THEOREM 2.6. Let {z,} be an ey-Cauchy sequence in a normed lin-
ear space V which satisfies the Heine-Borel property. If ¢¢ > 0 and
diam(SSL({x,})) = d then there exists an open convex subset G of V

such that
hull(SSLYNG # 0 and G C |eg — lim r,,.

n—aoo

Proof. Since {x,} is ultimately bounded, SSL is non-empty and com-
pact by lemma 1.4. Hence there is a point o € SSL. If SSL = {a} is a
singleton then we choose the open set G as G = B(«q, ¢y). Then we have

hull(SSLYN G = {a} # 0 and G = B(a, &) = xn. Suppose

n—-~ao0

that SSL is not a singleton. Then hull(SSL) is not a singleton, too, and
has the same diameter. Hence there are two points «, 5 € hull(SSL)
such that || — B]] = d > 0 since hull(SSL) is also compact and
diam(hull(SSL)) = d > 0. For each element x € T = B(«a,d) N B(f,d),
the quantity sup{|ly—z|| : v € hull(SSL)} is a non-negative real number
since hull(SSL) is compact. Hence the infimum r = in f{sup{||y — z|| :
y € hull(SSL)} : x € T} exists. At the first step, we will prove
that this infimum 7 is less than the diameter d of hull(SSL). Assume
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that » > d. Then we have sup{|ly — x| : y € hull(SSL)} > d for
all x € T. In particular, we have sup{|ly — || : v € hull(SSL)} >
d. Here v = O‘T*B Since 7 is the center point of the line segment

af C hull(SSL), we must have sup{|ly — 7| : y € hull(SSL)} = d.
Since hull(SSL) is compact, there is a point y, € hull(SSL) such that
lyy = Il = sup{lly = [l : y € hull(SSL)} = d. Thus y, € O(B(y,d)).
Now consider the midpoint n = w% Since n is a point of the set T,
we also have sup{||ly —n|| : y € hull(SSL)} > r > d by the assumption
r > d. And there is an element y, € hull(SSL) such that ||y, —n|| =
sup{lly —n|| : y € hull(SSL)} > r > d since hull(SSL) is compact. But
we have y, € [B(7,d) — B(n,d)] and this set B(v,d) — B(n, d) is disjoint
from the closed ball B(y,,d). For if z € B(y,d) — B(n,d) N B(y,,d),
then we have ||z — 7| < d, ||z — || > d and ||z — y,]| < d which is
a contradiction since n = ¥ Thus we have ||y, — y,|| > d which
is a contradiction with the fact that diam(hull(SSL)) = d. There-
fore, the infimum r must satisfy the relation r < d. And this infi-
mum is in fact the minimum of that set since hull(SSL) and T are
compact. Hence there is a point xy € T and is the minimum real
number 7y such that 0 < ry < d and hull(SSL) C B(xg,70). At
the next step, since the number ry is the minimal number such that
ro = inf{sup{lly — xo|| : v € hull(SSL)} : zy € T}, it is obvi-
ous that xy can be chosen so that zo € hull(SSL). Then we have
hull(SSL) N B(zg,70) # ® and SSL C B(zg,7). Moreover, by taking
G = B(xg, €y — 19), we have

G = B(rg,eg—10) = N Bla,&)
a€B(zo,r0)

C N B
~  aceSSL (e €0)

= | — limz,

n—aoo

which completes the proof. O
COROLLARY 2.7. If D C R™ satisfies bUDF(b, {1 - \/75}60) = R™
S
then D is eg-complete.

Proof. At first, assume that ¢ = 0 and let any 0-Cauchy sequence
{z,} be given. Then any single-valued subsequence of {x,} is a Cauchy
sequence in the usual sense. Since R™ is complete in the usual sense
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and {z,} is a 0-Cauchy sequence, the set of all the subsequential limits
SSL({x,}) must be a singleton. Thus {x,} is a 0-convergent sequence.
Now suppose that €5 > 0 and any ¢p-Cauchy sequence {z,} in D be
given. If hull(SSL) = {a} is a singleton, then the ¢p-limit of {z,} is
B(a, €9) which implies that the sequence {z,,} is ¢y-convergent. Suppose
that hull(SSL) is not a singleton. At the first step, we will show that the
minimum rq in the theorem just above satisfies the inequality 7y < \/ng
if the diameter of hull(SSL(x,)) is d for an ¢)-Cauchy sequence {z,} in
D. Since hull(SSL) is not a singleton, there are two distinct elements
To, Yo € hull(SSL) such that ||xg — yo|| = d since hull(SSL) is compact.
By an appropriate rotation and translation of the axes and the origin
in the usual Euclidean coordinate system of R™, we may assume that
zo = (—£,0,---,0), yo = (4,0,--+,0) and 2F% = (0,0,---,0). Then
we must have

hull(SSL) C B(wg,d) N B(yo, d)

since diam(hull(SSL)) = d. But the equation of the most far bound-
ary from the origin of the intersection of the boundaries dB(z, d) and
0B(yo,d) is given by

(:cl—§)2—|—x§+~--+:c,2n:d2:(x1—|—§)2—|—:c§—|—~~—|—xfn.
That is, we have
3
IE1:0, x3++x%121d2

Thus the distance between the origin and the boundary of the intersec-
tion B(xg,d) N B(yo, d) satisfies the inequality

. = - V3
dist(0,0 {B(zo,d) N B(yop,d)}) < Td'

Hence hull(SSL) is contained in the closed ball with the radius \/ng_
Then, by the theorem just above, there is a point x € hull(SSL) and

exists a real number 7y < \/ng such that B(z,ey — 1) C xn.

n——oo
But we have

V3 V3 V3

EO_TOZEO_TdZEO—TEOZ(1—7)60.
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Since this inequality implies that B(x, (1 — \/73)60) C B(z,e0 — 10), We
have D N B(x, ¢y — 19) # () which implies that {z,,} is an ey-convergent

sequence. Therefore, D is ey-complete. O

Note that if V' is a normed linear space which satisfies the Heine-Borel
property and €, > 0, then any dense subset D of V' in the usual sense is
€o-complete since D N B(x,r) # () for all x € V and all r > 0.

THEOREM 2.8. Let V' be a normed linear space which satisfies the
Heine-Borel property. Then any closed subset D of V' is ey-complete for
all g > 0.

Proof. Suppose that D is a closed subset of V' and let any e,-Cauchy
sequence {x,} C D be given. By corollary 2.4, we have

SSL C|eo — lim z,.

n—:aoo

But the set SSL({z,}) # 0 since {z,} is ultimately bounded. Since
SSL C D, this implies that

0+ SSL CDN|e —limlr,.

n—-~ao0

But we have D = D since D is closed. Thus D is ey-complete for all
€0 Z 0. ]

COROLLARY 2.9. Let V' be a normed linear space which satisfies the
Heine-Borel property. Let D # () be a subset of V' and a real number
€0 > 0 be given. If D is e)-complete then D is ey-complete. But the
converse is not true in general.

Proof. By the theorem just above, it is clear that D is ey-complete.
Now consider the subset D of R given by

1 1
D={-—1+-:neN}.

Then D = D U {0,1} is 1-complete since it is closed. But if we choose
a sequence {x,} such that z, = —% and To,_; = 1+ %%1 for each
n € N then SSL({z,}) = {0,1}. Hence we have

6o — limr, = o Blas) =01,

n—aoo

Since DN [0,1] = @, D is not 1-complete. O
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THEOREM 2.10. Let V' be a normed linear space which satisfies the
Heine-Borel property. Then any convex subset D of V' is eyg-complete for
all g > 0.

Proof. Suppose that D is a convex subset of V. Since () is ep-complete,
we may assume that D # (). And let any e,-Cauchy sequence {z,} C D
be given. Since {,} is also an e-Cauchy sequence in D which is -
complete by theorem 2.8, we have

0 # hull(SSL) € DN e —limpr, =D 0 Bla, e)

n——aoo

since D is also convex. If D N hull(SSL) # () then we are done since
the intersection of D and the ey-limit of {x,} is not an empty set. Now
suppose that D N hull(SSL) = (. Then hull(SSL) is a subset of the
derived set D', the set of all the accumulation points of D. That is, it is

a subset of the set D' — D. By the theorem 2.6, there is an open convex
subset G of V' such that

hull(SSLYNG # 0 and G C [ e — lim|z,.

n—-aoo

Choose a point o € hull(SSL)NG. Then a € D'— D and o € G. Since
GG is an open set containing the accumulation point o of D, there is a
point § € D such that § € G and 8 # a. Then

C B )
pepnGCDn N Blaa)

Thus D N :cn # () which completes the proof. n

n—-ao0

Note that the convex subset of V' is not 0-complete in general.

PROPOSITION 2.11. (1) The union of the €y-complete subsets does not
need to be eg-complete. (2) The intersection of the €)-complete subsets
does not need to be ey-complete.

Proof. (1) Let Dy ={—2:n € N}and Dy = {1+ : n € N}. Inorder
to prove that D; is 1-complete, let any 1-Cauchy sequence {z,} C D,
be given. Then SSL({x,}) # 0 and SSL C D; U {0}. Hence we have

[~L0C N Blal)C 0 Blal)=[1-limpg,

aeD1U{0} 00
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Thus the intersection of Dy and the 1-limit of {z,,} is not an empty set.
Hence D; is 1-complete. Since the diameter of Dy is 1, we can prove by
the same method that D, is also 1-complete. But the union

1 1
D1UD2:{—E,1+;77/€N}

is not 1-complete as in the proof of corollary 2.9. (2) Let Dy = {—+,0, 1+
L:neN}and Dy ={-%,1,1+2:n e N}. In order to prove that D,
is 1-complete, let any 1-Cauchy sequence {z,} C D; be given. Since the
diameter of SSL satisfies the inequality Diam(SSL) < 1, the following

three cases occur.
() 0+4SSL=1{01),
1
(i1) 0 # SSL C {—E,O :n € N},

(i) @¢55Lg{1+%,1:nezv}.

(i) If SSL = {0,1} then Dy N[1 —lim}r, = D; N [0,1] = {0} # 0. (ii) If

n——~oo

SSL C {-%,0:n € N} then D, ﬂxn D {-10:neN}#£0.
n—aoQ
(iii) If SSLC {1+ 1,1:n e N} thenDlﬂan {1+i:ne

n—aoo

N} # (). Therefore, Dy is 1-complete. On the other hand, we can prove
by the same method that D, is also 1-complete. But the intersection

1 1
DlﬂDQZ{__,1+_ :nGN}
n n
is not 1-complete as in the proof of (1). O

PROPOSITION 2.12. Let V' be a normed linear space which satisfies the
Heine-Borel property and let ¢y > 0 be a positive real number. If a subset
D of V' is not ey-complete then there is an €y-Cauchy sequence {x,} such
that hull(SSL) N B(~y,r) # 0, SSLN B(vy,r) = 0 and diam(SSL) = €
for some v € V and some positive real number r > 0. Moreover, SSL
satisfies the following condition.

Va € SSL,38 € SSL s.t. |la — 8| = e.
Proof. Suppose that D is not ¢p-complete. Then there is an ¢p-Cauchy

sequence {z,} in D such that Dﬂxp = 0. If hull(SSL)YND # 0

p—>00
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then we have

0# DN hutl(SSL) S DN { 0 Bla,e)} S DN xp.
This is a contradiction. Hence hull(SSL)ND = () and SSL C D' — D

since SSL C D. On the other hand, there is an element v and is a real
number r > 0 by theorem 2.6 such that

hull(SSL) N B(vy,r) # 0 and B(y,r) C QGQSLB(a, €0)-
It is obvious that D N B(y,r) = 0. And if SSL N B(vy,r) # ( then
there exists an element oy € SSL C D' — D such that ag € B(7y,r).
Since «p is an accumulation point of D and B(~,r) is an open set,
there exists an element € D such that z € B(y,r). Hence we have
Dn {QEQSLE(OA, €0)} # () which is a contradiction. Hence we have SSLN

B(v,r) = 0. Now suppose that there is an element g € SSL such that
|lovg — B|| < €o for all elements 5 € SSL. Then we have

max{||ag — B|| : € SSL} =15 < €

since SSL is compact. Then we have

B - C B )

g € B(ap, e —10) C aef;SL (@, €)

Since oy € D' — D and B(ayg, €9 — 1¢) is an open set containing o, we
have D N B(ag, €0 — 1) # 0. This is a contradiction as the above. Since
the diameter of SSL is not greater than ¢y, this contradiction implies
that

Vo€ SSL,33 € SSL st |la— ]| = e
and diam(SSL) = €. O

THEOREM 2.13. Let D be a non-empty subset of a normed linear
space V' which satisfies the Heine-Borel property and let ¢y > 0. Then
D is not ey-complete if and only if there is a compact subset S of D' — D
such that diam(S) = €y and D N {QQSE(CY, )} = 0.

Proof. (=) Suppose that D is not ey-complete. Then we have an

€o-Cauchy sequence {z,} such that D N :Bp = (. As in the
p—>r00

proof of the proposition just above, we have SSL({z,}) C D’ — D and

diam[SSL] = €. Now put S = SSL({z,}). Then S is compact by
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lemma 1.4. And diam(S) = ¢y and S C D’ — D as in the proof of the
proposition just above. Moreover,

Dn {OQSE(Q, €)=DnN {QEQSLE(Q, )} =10

i n B = |6 — lim{z,. (<) S that th ist
since nesSe) (o, €0) xp (<) Suppose that there exists

p—r 00

a compact subset S of D' — D such that D N {agsg(a,eo)} = () and
diam(S) = €. Since S C D' — D, for each a € S, there is a single-
valued sequence {z,,} in D such that |z,, — af < 110 for each p € N.
In order to verify that D is not ¢p-complete, let’s choose a multi-valued
sequence {x,} so that x, = {x,, : @ € S} for each p € N. In order to
show that {x,} is an ¢;-Cauchy sequence, let any positive number € > ¢,
be given. Choosing a natural number K € N so large that K >
we have, since ||a — || < ¢ for all a, 8 € S,

2
e—eg’

Ve>e, 3 Ke€Nst (Vp,qp,q> K,Va,, € xp,Vag, € 1,
= lza, =gl < 70, —all + la =Bl + 16 — 23,
< Lyl
> —7Té6T S o T6
p ¢ K
< €—¢€+te=¢€.
Thus the sequence {z,} is an ¢-Cauchy sequence in D. Since the
limit of the subsequential limits is also a subsequential limit, we have

SSL({z,}) = S. But S = S since S is closed. Thus SSL({z,}) = S.
Finally, by the assumption, we have

D B =D B =
N {aESSQ({zp}) (a7 60)} N {aQS (OZ, E0)} @

Consequently, D is not €y-complete. O

PROPOSITION 2.14. (Criterion) Let V, W be two normed linear spaces
such that both V' and W satisfy the Heine-Borel property. Let f : D —
W be a multi-valued function defined on a bounded subset D of V. Then
f is €g-uniformly continuous on D if and only if { f(x,)} is an ey-Cauchy
sequence in W for every 0-Cauchy sequence {z,} on D.

Proof. (=) Suppose that f is ep-uniformly continuous on D and any
0-Cauchy sequence {z,} on D be given. Then we have
Ve > e€p,30 >0 st. (Vx,y € D)||lz —y| <,Vf(z),Vf(y)

= |lf@) = fWl <e
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Since {z,} is a 0-Cauchy sequence, we have

JK € N,s.t.(Vp,q € N)p,q > K,Vx,,Vr, = ||z, — 24| <.
Thus we have

Ve > ey, 3K € N st. (Vp,qg€ N)p,q> K, Vf(x,),Yf(z,)

= |If(zp) — flzy)| <

Therefore, {f(x,)} is an ey-Cauchy sequence in W. (<) Suppose that f
is not eg-uniformly continuous on D. Then we have

Jdey > €9 st {V0 > 0,3ws,ys € D, 3f(xs), f(ys) € W

st lzs —wsll <6, [ f(xs) = fys)ll = er}
Choosing 6 = zlo for each natural number p € N, we have

e} (€D A ()} S )} CW
st [z — ol < é M) — Fu)l = .

Since {z,} and {y,} are bounded sequences in a bounded subset D and

the closure D is compact, we may assume that limz, = limy, = «
p—o0 p—0o0

for some a € D by choosing single-valued and convergent subsequences.
Let’s define a sequence {z,} by 22,_1 = , and 29, = y, for each natural

number p € N. Then lim z, = o and {z,} is a 0-Cauchy sequence in D.
p—00

But we have

1/ (z2p1) = fz20) | = 1 (2p) = Fw) | = &

for all p € N. Hence {f(z,)} is not an ¢y-Cauchy sequence. This is a
contradiction which completes the proof. ]

THEOREM 2.15. Let V, W be two normed linear spaces such that both
V and W satisfy the Heine-Borel property. And let f : D — W be a
multi-valued function defined on a 0- complete subset D of V. If f is
€o-uniformly continuous on D then, for every 0-Cauchy sequence {x,}
on D, there is an element o € D such that {f(z,)} €o-converges to

fle) € f(D).
Proof. Let any 0-Cauchy sequence {x,} on D be given. Since f(x) is
eo-uniformly continuous on D, we have

Ve > e€y,30 >0 st. (Vx,y € D)||lz —y| <,Vf(z),Vf(y)
= |f(@) = fWll <e
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But we have xp = {a} for some o € D since D is 0-complete.

p—>00
Hence we have

dK € N st.Vp > K,Vz, = |z, — af <.
Hence we have

Ve > ey, dK € N st. Vp> K, Vf(x,),Vf(x)
= f(z) = fla)ll <e

Thus we have f(«) € f(xp) for all values of f(«). Since f(«) €

p—>00
f(D) for all values of f(«), the sequence {f(z,)} is an ey-convergent
sequence of f(D). O

Now we introduce a concept of the generalized Banach spaces.

DEFINITION 2.16. Let €9 > 0 be a non-negative real number. A linear
space V on a field F' is called the ¢y-Banach space if and only if V' is an
ep-complete normed linear space.

PROPOSITION 2.17. Let V be a real normed linear space which satis-
fies the Heine-Borel property. Then V' is the €y-Banach space for all real
number ¢y > 0.

Proof. Let any €p-Cauchy sequence {z,} in V be given. Then we have
Ve > ¢y, 3K € N such that Vm,n > K, Vi, x, = ||z, — x,| <€

Since {z,} is ultimately bounded, the set SSL of all the subsequential
limits of {z,} is not empty and compact. Hence, by lemma 2.3,

0+ SSL C e — limlz,.
n—aoo

Hence V is eg-complete which completes the proof. O

THEOREM 2.18. Let V' be a real normed linear space which satisfies
the Heine-Borel property. Then any linear subspace W of V' is the ¢,-
Banach space for all real number ¢y > 0.

Proof. Any linear subspace W is a convex subset of V. By the theorem
2.10, W is ep-complete. Hence W is also an ey-Banach space for all real
number ¢, > 0. ]
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