DIAGONAL SUMS IN NEGATIVE TRINOMIAL TABLE

Eunmi Choi and Yuna Oh

Abstract

We study the negative trinomial table T^{\prime} of $\left(x^{2}+x+\right.$ $1)^{-n}$ and its t / u-slope diagonals for any $t, u>0$. We investigate recurrence formula of the t / u-slope diagonal sums of T^{\prime} and find interrelationships with t / u-slope diagonal sums of the trinomial table T.

1. introduction

The Pascal table P and the negative Pascal table P^{\prime} are well known arithmetic tables of $(x+1)^{ \pm n}$ respectively for $n \geq 0$. Each diagonal sum over P makes a Fibonacci number F_{n}, and it is not hard to see that certain diagonal sums over P^{\prime} makes F_{-n} by comparing the tables P and $P^{\prime}([1],[6],[7])$. In fact, each diagonals and rows in P can be found as a type of diagonals in P^{\prime}. As a generalization, there have been researches about the trinomial table T and the negative trinomial table T^{\prime} of $\left(x^{2}+x+1\right)^{ \pm n}$ respectively ([3], [4]).

	T		T^{\prime}		
	0\| 1			1-1	0) $1-10$
$1 \mid$	1\| 11		$2 \mid$	1-2	$1 \quad 2-42$
$2 \mid$	2\|12 321	and	$3 \mid$	1-3	$3-99$
$3 \mid$	3\|136763			1-4	6 0-1524
	4\| 1410161916			$1-510$	-5-20 49
	\| 15515304551			1-615	-14-21 84

[^0]Each diagonal sum over T makes a tribonacci number ([2], [5]). However unlike P and P^{\prime}, interrelationships between components of T and T^{\prime} may not be seen easily by only looking at the tables. For example, the marked diagonal $\{1,4,6,2\}$ in T may not be appeared in any type of diagonals in T^{\prime}.

In this work we investigate sequences of certain diagonal sums in T^{\prime}, and find their interrelationships. We consider various diagonals of any slope t / u that moves u steps in x-axis and t steps in y-axis over both T and T^{\prime}. And we study sequential properties of t / u-slope diagonal sums. Throughout the work, let $P=\left[u_{i, j}\right]$ and $P^{\prime}=\left[u_{i, j}^{\prime}\right]$ be (negative) Pascal tables, while $T=\left[e_{i, j}\right]$ and $T^{\prime}=\left[e_{i, j}^{\prime}\right]$ be the (negative) trinomial tables for $i, j \geq 0$.

2. Certain slope diagonal sums of Negative trinomial table

For integers $t, u>0$, a t / u-slope diagonal (abbr. diag.) over an arithmetic table means a diagonal that moves u steps toward x-axis and t steps toward y-axis. In particular if $u=1$ then we simply say it a t-slope diagonal. So the 1 -slope diag. is the ordinary diagonal. Over the negative trinomial table T^{\prime}, by $S_{n}^{(t / u) \uparrow}$ we mean the t / u-slope ascending diag. sum starting from $e_{n, 0}^{\prime}$. We also denote by $S_{n}^{(t / u) \downarrow}$ the t / u-slope descending diag. sum from $e_{1, n}^{\prime}$. So for instance, $S_{i}^{(t / 1) \uparrow}=$ $e_{i, 0}^{\prime}+e_{i-t, 1}^{\prime}+e_{i-2 t, 2}^{\prime}+\cdots$ and $S_{j}^{(1 / t) \downarrow}=e_{1, j}^{\prime}+e_{2, j-t}^{\prime}+e_{3, j-2 t}^{\prime}+\cdots$.

Like $u_{i, j}+u_{i, j+1}=u_{i+1, j+1}$ in P, the recurrence rules over T and T^{\prime}
$e_{i, j-1}+e_{i, j}+e_{i, j+1}=e_{i+1, j+1}$ and $e_{i, j+1}^{\prime}-e_{i+1, j-1}^{\prime}-e_{i+1, j}^{\prime}=e_{i+1, j+1}^{\prime}$ (*)
are well known. We explore some entries in T^{\prime} to get diagonal sums.
Theorem 1. $T^{\prime}=\left[e_{i, j}^{\prime}\right]$ satisfies the followings.

$$
\text { (1) }\left\{\begin{array}{l}
e_{i, 0}^{\prime}=e_{i, 0}=1 \\
e_{i, 1}^{\prime}=-e_{i, 1}=-i \\
e_{i, 2}^{\prime}=e_{i-1,2}=\frac{(i-1) i}{2}
\end{array} \quad \text { (2) } e_{1, j}^{\prime}=\left\{\begin{aligned}
1 & \text { if } j \equiv 0(\bmod 3) \\
-1 & \text { if } j \equiv 1(\bmod 3) \\
0 & \text { if } j \equiv 2(\bmod 3)
\end{aligned}\right.\right.
$$

So $e_{1, j}^{\prime}+e_{1, j+1}^{\prime}+e_{1, j+2}^{\prime}=0$ for $j \geq 0$.
Proof. Clearly $e_{i+1,0}^{\prime}=1=e_{i+1,0}$, We notice
$e_{3,0}^{\prime}=1=e_{3,0}, e_{3,1}^{\prime}=-3=-e_{3,1}, e_{3,2}^{\prime}=3=e_{2,2}$,
and $e_{4,0}^{\prime}=1=e_{4,0}, e_{4,1}^{\prime}=-4=-e_{4,1}, e_{4,2}^{\prime}=6=e_{3,2}$.

Assume the identities (1) are true for some i. Then the recurrence rule (\star) of T^{\prime} with induction hypothesis shows
$e_{i+1,1}^{\prime}=e_{i, 1}^{\prime}-e_{i+1,0}^{\prime}=-e_{i, 1}-e_{i+1,0}=-e_{i+1,1}=-(i+1)$,
$e_{i+1,2}^{\prime}=e_{i, 2}^{\prime}-e_{i+1,0}^{\prime}-e_{i+1,1}^{\prime}=e_{i-1,2}-e_{i+2,0}+e_{i+1,1}$

$$
=e_{i-1,2}-e_{i, 0}+\left(e_{i, 0}+e_{i, 1}\right)=e_{i-1,2}+e_{i, 1}=e_{i, 2},
$$

and $e_{i+1,2}^{\prime}=e_{i, 2}^{\prime}-e_{i+1,0}^{\prime}-e_{i+1,1}^{\prime}=\frac{(i-1) i}{2}-1+(i+1)=\frac{i(i+1)}{2}$.
Observe the first few entries $\{1,-1,0,1,-1,0,1,-1,0, \cdots\}$ in the 1th row. In fact, from $e_{1,0}^{\prime}=1$ and $e_{1,1}^{\prime}=-1$ in (1), we have $e_{1,2}^{\prime}=e_{0,2}^{\prime}$ -$e_{1,0}^{\prime}-e_{1,1}^{\prime}=0$ and $e_{1,3}^{\prime}=e_{0,3}^{\prime}-e_{1,1}^{\prime}-e_{1,2}^{\prime}=1$. If we assume the identities (2) for $j<3 k(k \in \mathbb{Z})$ then (1) implies

$$
e_{1, j}^{\prime}=e_{0, j}^{\prime}-e_{1, j-2}^{\prime}-e_{1, j-1}^{\prime}= \begin{cases}0-(-1)-(0)=1 & \text { if } j=3 k \\ 0-(0)-1=-1 & \text { if } j=3 k+1 \\ 0-1-(-1)=0 & \text { if } j=3 k+2\end{cases}
$$

Let us begin to consider 1 -slope diag. sums $S_{j}^{(1) \downarrow}$ in T^{\prime}.
Theorem 2. $S_{j}^{(1) \downarrow}=-S_{j-2}^{(1) \downarrow}$, so $S_{j-3}^{(1) \downarrow}-S_{j-2}^{(1) \downarrow}+S_{j-1}^{(1) \downarrow}=S_{j}^{(1) \downarrow}$.
Proof. By Theorem 1 and the recurrence rule (\star) of T^{\prime}, we have
$S_{0}^{(1) \downarrow}=e_{1,0}^{\prime}=1, \quad S_{1}^{(1) \downarrow}=e_{1,1}^{\prime}+e_{2,0}^{\prime}=-1+1=0$,
$S_{2}^{(1) \downarrow}=e_{1,2}^{\prime}+e_{2,1}^{\prime}+e_{3,0}^{\prime}=-1$ and $S_{3}^{(1) \downarrow}=e_{1,3}^{\prime}+e_{2,2}^{\prime}+e_{3,1}^{\prime}+e_{4,0}^{\prime}=0$,
etc. So the first few values are $\left\{S_{j}^{(1) \downarrow} \mid 0 \leq j \leq 7\right\}=\{1,0,-1,0,1,0,-1,0\}$, where these satisfy $S_{j}^{(1) \downarrow}=-S_{j-2}^{(1) \downarrow}$ and $S_{j}^{(1) \downarrow}=S_{j-3}^{(1) \downarrow}-S_{j-2}^{(1) \downarrow}+S_{j-1}^{(1) \downarrow}$.

In general, the 1 -slope descending diag. sum starting from $e_{1, j}^{\prime}$ is
$S_{j}^{(1) \downarrow}=e_{1, j}^{\prime}+e_{2, j-1}^{\prime}+\cdots+e_{j-1,2}^{\prime}+e_{j, 1}^{\prime}+e_{j+1,0}^{\prime}$,
and each component can be expressed by the recurrence (\star) of T^{\prime} that
$e_{1, j}^{\prime}=e_{1, j}^{\prime}$
$e_{2, j-1}^{\prime}=e_{1, j-1}^{\prime}-e_{2, j-3}^{\prime}-e_{2, j-2}^{\prime}$

$e_{j+1,0}^{\prime}=e_{j, 0}^{\prime}$
Hence by taking columnwise sum from the above table, we have

$$
\begin{aligned}
S_{j}^{(1) \downarrow}= & e_{1, j}^{\prime} \\
& +\underbrace{\left(e_{1, j-1}^{\prime}+\cdots+e_{j-1,1}^{\prime}+e_{j, 0}^{\prime}\right)}_{S_{j-1}^{(1) \downarrow}} \\
& -\underbrace{\left(e_{2, j-3}^{\prime}+\cdots+e_{j-1,0}^{\prime}\right)}_{S_{j-2}^{(1) \downarrow}-e_{1, j-2}^{\prime}}-\underbrace{\left(e_{2, j-2}^{\prime}+\cdots+e_{j-1,1}^{\prime}+e_{j, 0}^{\prime}\right)}_{S_{j-1}^{(1) \downarrow}-e_{1, j-1}^{\prime}}
\end{aligned}
$$

$$
=\left(e_{1, j}^{\prime}+e_{1, j-1}^{\prime}+e_{1, j-2}^{\prime}\right)+S_{j-1}^{(1) \downarrow}-S_{j-2}^{(1) \downarrow}-S_{j-1}^{(1) \downarrow}
$$

But since $e_{1, j}^{\prime}+e_{1, j-1}^{\prime}+e_{1, j-2}^{\prime}=0$ by Theorem 1, we have $S_{j}^{(1) \downarrow}=S_{j-1}^{(1) \downarrow}-S_{j-2}^{(1) \downarrow}-S_{j-1}^{(1) \downarrow}=-S_{j-2}^{(1) \downarrow}$, so $S_{j-3}^{(1) \downarrow}-S_{j-2}^{(1) \downarrow}+S_{j-1}^{(1) \downarrow}=S_{j}^{(1) \downarrow}$.

THEOREM 3. $S_{j}^{(1 / 2) \downarrow}=-S_{j-1}^{(1 / 2) \downarrow}$, so $S_{j-3}^{(1 / 2) \downarrow}+S_{j-2}^{(1 / 2) \downarrow}-S_{j-1}^{(1 / 2) \downarrow}=S_{j}^{(1 / 2) \downarrow}$.
Proof. Each 1/2-slope descending diagonal starting from $e_{1, j}^{\prime}$ ends at either 0 th or 1 th column according to even or odd j. So if $j=2 k+r$ $(r=0,1)$ then

$$
S_{j}^{(1 / 2) \downarrow}=e_{1, j}^{\prime}+e_{2, j-2}^{\prime}+\cdots+e_{k, r+2}^{\prime}+e_{k+1, r}^{\prime}
$$

The first few $1 / 2$-slope descending diag. sums $\left\{S_{j}^{(1 / 2) \downarrow} \mid 0 \leq j \leq 5\right\}$ of T^{\prime} are $\{1,-1,1,-1,1,-1\}$, and it satisfies $S_{j}^{(1 / 2) \downarrow}=-S_{j-1}^{(1 / 2) \downarrow}$ for $j \leq 5$.

Assume $S_{j}^{(1 / 2) \downarrow}=-S_{j-1}^{(1 / 2) \downarrow}$ is true for all $j<2 k(k \in \mathbb{Z})$. If $j=2 k$ then
$S_{j}^{(1 / 2) \downarrow}=e_{1, j}^{\prime}+e_{2, j-2}^{\prime}+\cdots+e_{k, 2}^{\prime}+e_{k+1,0}^{\prime}$
From the recurrence rule (\star) in T^{\prime}, since

$$
\begin{aligned}
e_{1, j}^{\prime} & =e_{1, j}^{\prime} \\
e_{2, j-2}^{\prime} & =e_{1, j-2}^{\prime}-e_{2, j-4}^{\prime}-e_{2, j-3}^{\prime} \\
& \cdots \\
e_{k, 2}^{\prime} & =e_{k-1,2}^{\prime}-e_{k, 0}^{\prime} \quad-e_{k, 1}^{\prime} \\
e_{k+1,0}^{\prime} & =e_{k, 0}^{\prime}
\end{aligned}
$$

the columnwise sum of the above table gives rise to

$$
\begin{aligned}
S_{j}^{(1 / 2) \downarrow}= & e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-2}^{\prime}+\cdots+e_{k-1,2}^{\prime}+e_{k, 0}^{\prime}\right)}_{S_{j-2}^{(1 / 2) \downarrow}}-\underbrace{\left(e_{2, j-4}^{\prime}+\cdots+e_{k, 0}^{\prime}\right)}_{S_{j-2}^{(1 / 2) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-3}^{\prime}+\cdots e_{k, 1}^{\prime}\right)}_{S_{j-1}^{(1 / 2) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-2}^{(1 / 2) \downarrow}-S_{j-2}^{(1 / 2) \downarrow}-S_{j-1}^{(1 / 2) \downarrow}=-S_{j-1}^{(1 / 2) \downarrow},
\end{aligned}
$$

because $e_{1, j}^{\prime}+e_{1, j-1}^{\prime}+e_{1, j-2}^{\prime}=0$ by Theorem 1 .
On the other hand, when $j=2 k+1$, due to the following table

$$
\begin{aligned}
e_{1, j}^{\prime} & =e_{1, j}^{\prime} \\
e_{2, j-2}^{\prime} & =e_{1, j-2}^{\prime}-e_{2, j-4}^{\prime}-e_{2, j-3}^{\prime} \\
& \cdots \\
e_{k, 3}^{\prime} & =e_{k-1,3}^{\prime}-e_{k, 1}^{\prime} \\
e_{k+1,1}^{\prime} & =e_{k, 1}^{\prime} \\
& -e_{k, 2}^{\prime} \\
& -e_{k+1,0}^{\prime}
\end{aligned}
$$

we have

$$
S_{j}^{(1 / 2) \downarrow}=e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-2}^{\prime}+\cdots+e_{k-1,3}^{\prime}+e_{k, 1}^{\prime}\right)}_{S_{j-2}^{(1 / 2) \downarrow}}-\underbrace{\left(e_{2, j-4}^{\prime}+\cdots+e_{k, 1}^{\prime}\right)}_{S_{j-2}^{(1 / 2) \downarrow}-e_{1, j-2}^{\prime}}
$$

$$
-\underbrace{\left(e_{2, j-3}^{\prime}+\cdots+e_{k+1,0}^{\prime}\right.}_{S_{j-1}^{(1 / 2) \downarrow} \downarrow e_{1, j-1}^{\prime}})=S_{j-2}^{(1 / 2) \downarrow}-S_{j-2}^{(1 / 2) \downarrow}-S_{j-1}^{(1 / 2) \downarrow}=-S_{j-1}^{(1 / 2) \downarrow} .
$$

This implies $S_{j-3}^{(1 / 2) \downarrow}+S_{j-2}^{(1 / 2) \downarrow}-S_{j-1}^{(1 / 2) \downarrow}=S_{j}^{(1 / 2) \downarrow}$.
Theorem 4. $S_{j-3}^{(1 / 3) \downarrow}-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow}=S_{j}^{(1 / 3) \downarrow}$.
Proof. Note that $1 / 3$-slope descending diag. starting from $e_{1, j}^{\prime}$ ends at 0,1 or 2 th column according to $j(\bmod 3)$. So when $j=3 k+r$ ($r=0,1,2$),

$$
S_{j}^{(1 / 3) \downarrow}=e_{1, j}^{\prime}+e_{2, j-3}^{\prime}+\cdots+e_{k, r+3}^{\prime}+e_{k+1, r}^{\prime}
$$

We easily see $\left\{S_{j}^{(1 / 3) \downarrow} \mid 0 \leq j \leq 10\right\}=\{1,-1,0,2,-3,1,4,-8,5,7,-20\}$ and notice a recurrence $S_{j-3}^{(1 / 3) \downarrow}-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow}=S_{j}^{(1 / 3) \downarrow}$ for $0 \leq j \leq 10$. We now assume $S_{j-3}^{(1 / 3) \downarrow}-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow}=S_{j}^{(1 / 3) \downarrow}$ is true for $j<3 k$ $(k \in \mathbb{Z})$. If $j=3 k$ then by making a table

$$
\begin{aligned}
e_{1, j}^{\prime} & =e_{1, j}^{\prime} \\
e_{2, j-3}^{\prime} & =e_{1, j-3}^{\prime}-e_{2, j-5}^{\prime}-e_{2, j-4}^{\prime} \\
& \cdots \\
e_{k, 3}^{\prime} & =e_{k-1,3}^{\prime}-e_{k, 1}^{\prime} \\
e_{k+1,0}^{\prime} & =e_{k, 0}^{\prime}
\end{aligned}
$$

we have

$$
\begin{aligned}
S_{j}^{(1 / 3) \downarrow} & =e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-3}^{\prime}+\cdots+e_{k-1,3}^{\prime}+e_{k, 0}^{\prime}\right)}_{S_{j-3}^{(1 / 3) \downarrow}}-\underbrace{\left(e_{2, j-5}^{\prime}+\cdots+e_{k, 1}^{\prime}\right)}_{S_{j-2}^{(1 / 3) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-4}^{\prime}+\cdots+e_{k, 2}^{\prime}\right)}_{S_{j-1}^{(1 / 3) \downarrow-e_{1, j-1}^{\prime}}}=S_{j-3}^{(1 / 3) \downarrow}-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow} .
\end{aligned}
$$

Analogously if $j=3 k+1$ the with the similar table above we have

$$
\begin{aligned}
S_{j}^{(1 / 3) \downarrow}= & e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-3}^{\prime}+\cdots+e_{k-1,4}^{\prime}+e_{k, 1}^{\prime}\right.}_{S_{j-3}^{(1 / 3) \downarrow}})-\underbrace{\left(e_{2, j-5}^{\prime}+\cdots+e_{k, 2}^{\prime}\right)}_{S_{j-2}^{(1 / 3) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-4}^{\prime}+\cdots+e_{k, 3}^{\prime}+e_{k+1,0}^{\prime}\right)}_{S_{j-1}^{(1 / 3) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-3}^{(1 / 3) \downarrow-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow} .}
\end{aligned}
$$

Finally when $j=3 k+2$ we also have

$$
S_{j}^{(1 / 3) \downarrow}=e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-3}^{\prime}+\cdots+e_{k-1,5}^{\prime}+e_{k, 2}^{\prime}\right)}_{S_{j-3}^{(1 / 3) \downarrow}}-\underbrace{\left(e_{2, j-5}^{\prime}+\cdots+e_{k, 3}^{\prime}+e_{k+1,0}^{\prime}\right)}_{S_{j-2}^{(1 / 3) \downarrow}-e_{1, j-2}^{\prime}}
$$

$$
-\underbrace{\left(e_{2, j-4}^{\prime}+\cdots+e_{k, 4}^{\prime}+e_{k+1,1}^{\prime}\right)}_{S_{j-1}^{(1 / 3) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-3}^{(1 / 3) \downarrow}-S_{j-2}^{(1 / 3) \downarrow}-S_{j-1}^{(1 / 3) \downarrow}
$$

THEOREM 5. $S_{j-4}^{(1 / 4) \downarrow}-S_{j-2}^{(1 / 4) \downarrow}-S_{i-1}^{(1 / 4) \downarrow}=S_{j}^{(1 / 4) \downarrow}$ for all $j \geq 4$.
Proof. The $S_{j}^{(1 / 4) \downarrow}=\{1,-1,0,1,0,-2,2,1,-3,0,5,-4,-4\}$ satisfy $S_{j-4}^{(1 / 4) \downarrow}-S_{j-2}^{(1 / 4) \downarrow}-S_{i-1}^{(1 / 4) \downarrow}=S_{j}^{(1 / 4) \downarrow}$ for $0 \leq j \leq 12$. Any $1 / 4$-slope descending diag. starting from $e_{1, j}^{\prime}$ ends at $j(\bmod 4)$ th column. In fact, when $j=4 k+r(r=0,1,2,3)$ we have

$$
S_{j}^{(1 / 4) \downarrow}=e_{1, j}^{\prime}+e_{2, j-4}^{\prime}+\cdots+e_{k, r+4}^{\prime}+e_{k+1, r}^{\prime},
$$

and each component satisfies

$$
\begin{array}{rlr}
e_{1, j}^{\prime} & =e_{1, j}^{\prime} \\
e_{2, j-4}^{\prime} & =e_{1, j-4}^{\prime} & -e_{2, j-6}^{\prime} \\
& \cdots & -e_{2, j-5}^{\prime} \\
e_{k, r+4}^{\prime} & =e_{k-1, r+4}^{\prime}-e_{k, r+2}^{\prime} & -e_{k, r+3}^{\prime} \\
e_{k+1, r}^{\prime} & =e_{k, r}^{\prime} \quad-e_{k+1, r-2}^{\prime} & -e_{k+1, r-1}^{\prime}
\end{array}
$$

Hence if $j=4 k$ then

$$
\begin{aligned}
S_{j}^{(1 / 4) \downarrow}= & e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-4}^{\prime}+\cdots+e_{k-1,4}^{\prime}+e_{k, 0}^{\prime}\right)}_{S_{j-1}^{(1 / 4) \downarrow}}-\underbrace{\left(e_{2, j-6}^{\prime}+\cdots+e_{k, 2}^{\prime}\right)}_{S_{j-2}^{(1 / 4) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-5}^{\prime}+\cdots+e_{k, 3}^{\prime}\right)}_{S_{j-1}^{(1 / 4) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-4}^{(1 / 4) \downarrow}-S_{j-2}^{(1 / 4) \downarrow}-S_{j-1}^{(1-4) \downarrow} .
\end{aligned}
$$

If $j=4 k+1$ then we also have

$$
\begin{aligned}
S_{j}^{(1 / 4) \downarrow} & =e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-4}^{\prime}+\cdots+e_{k-1,5}^{\prime}\right)+e_{k, 1}^{\prime}}_{S_{j-4}^{(1 / 4) \downarrow}}-\underbrace{\left(e_{2, j-6}^{\prime}+\cdots+e_{k, 3}^{\prime}\right)}_{S_{j-2}^{(1 / 4) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-5}^{\prime}+\cdots+e_{k, 4}^{\prime}+e_{k+1,0}^{\prime}\right)}_{S_{j-1}^{(1 / 4) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-4}^{(1 / 4) \downarrow}-S_{j-2}^{(1 / 4) \downarrow}-S_{j-1}^{(1 / 4) \downarrow} .
\end{aligned}
$$

Analogously, the recurrence $S_{j}^{(1 / 4) \downarrow}=S_{j-4}^{(1 / 4) \downarrow}-S_{j-2}^{(1 / 4) \downarrow}-S_{j-1}^{(1 / 4) \downarrow}$ holds for any $j=4 k+r$ with any $0 \leq r \leq 3$.

The $1 / t$-slope descending diag. sum $S_{j}^{(1 / t) \downarrow}(t=5,6)$ are observed that

$$
\left\{S_{j}^{(1 / 5) \downarrow}\right\}=\{1,-1,0,1,-1,1,-1,0,2,-3,2,0,-2,4\}
$$

$$
\left\{S_{j}^{(1 / 6) \downarrow}\right\}=\{1,-1,0,1,-1,0,2,-3,1,3,-5,2,5,-10\}
$$

and notice recurrences $S_{j-5}^{(1 / 5) \downarrow}-S_{j-2}^{(1 / 5) \downarrow}-S_{j-1}^{(1 / 5) \downarrow}=S_{j}^{(5) \downarrow}$ and $S_{j-6}^{(1 / 6) \downarrow}-$ $S_{j-2}^{(1 / 6) \downarrow}-S_{j-1}^{(1 / 6) \downarrow}=S_{j}^{(1 / 6) \downarrow}$ for some j. A generalization is as follows.

Theorem 6. $S_{j-t}^{(1 / t) \downarrow}-S_{j-2}^{(1 / t) \downarrow}-S_{j-1}^{(1 / t) \downarrow}=S_{j}^{(1 / t) \downarrow}$ for all $j \geq t \geq 3$.
Proof. The first few $S_{j}^{(1 / t) \downarrow}$ are

$$
\begin{array}{l|l|l}
S_{0}^{(1 / t) \downarrow}=e_{1,0}^{\prime} & S_{t-1}^{(1 / t) \downarrow}=e_{1, t-1}^{\prime} & \begin{array}{l}
S_{2 t-2}^{(1 / t) \downarrow}=e_{1,2 t-2}^{\prime}+e_{2, t-2}^{\prime} \\
S_{1}^{(1 / t) \downarrow}=e_{1,1}^{\prime} \\
S_{2}^{(1 / t) \downarrow}
\end{array} e_{1,2}^{(1 / t) \downarrow}=e_{1, t}^{\prime} \\
S_{t+1}^{(1 / t) \downarrow}=e_{1, t}^{\prime}, \\
S_{2 t, t+1}^{(1) t \downarrow}+e_{2,1}^{\prime} & S_{2 t}^{(1 / t) \downarrow}=e_{1,2 t-1}^{\prime}+e_{2, t-1}^{\prime} \\
S_{1,2 t}^{(1 / t)}+e_{2, t}^{\prime}+e_{3,0}^{\prime}
\end{array}
$$

Since $e_{1, t+1}^{\prime}+e_{1, t}^{\prime}+e_{1, t-1}^{\prime}=0$ in Theorem 1, we have

$$
\begin{aligned}
S_{t+1}^{(1 / t) \downarrow}+S_{t}^{(1 / t) \downarrow}+S_{t-1}^{(1 / t) \downarrow} & =\left(e_{1, t+1}^{\prime}+e_{2,1}^{\prime}\right)+\left(e_{1, t}^{\prime}+e_{2,0}^{\prime}\right)+e_{1, t-1}^{\prime} \\
& =e_{2,1}^{\prime}+e_{2,0}^{\prime}=e_{1,1}^{\prime}=S_{1}^{(t) \downarrow} .
\end{aligned}
$$

And $e_{1,2 t}^{\prime}+e_{1,2 t-1}^{\prime}+e_{1,2 t-2}^{\prime}=0$ in Theorem 1 imply

$$
\begin{aligned}
& S_{2 t}^{(1 / t) \downarrow}+S_{2 t-1}^{(1 / t) \downarrow}+S_{2 t-2}^{(1 / t) \downarrow} \\
& \quad=\left(e_{1,2 t}^{\prime}+e_{2, t}^{\prime}+e_{3,0}^{\prime}\right)+\left(e_{1,2 t-1}^{\prime}+e_{2, t-1}^{\prime}\right)+\left(e_{1,2 t-2}^{\prime}+e_{2, t-2}^{\prime}\right) \\
& \left.\quad=\left(e_{1,2 t}^{\prime}+e_{1,2 t-1}^{\prime}+e_{1,2 t-2}^{\prime}\right)+\left(e_{2, t}^{\prime}+e_{2, t-1}^{\prime}\right)+e_{2, t-2}^{\prime}\right)+e_{3,0}^{\prime} \\
& \left.\quad=\left(e_{2, t}^{\prime}+e_{2, t-1}^{\prime}\right)+e_{2, t-2}^{\prime}\right)+e_{3,0}^{\prime}=e_{1, t}^{\prime}+e_{2,0}^{\prime}=S_{t}^{(t) \downarrow} .
\end{aligned}
$$

Now we assume $S_{j-t}^{(1 / t) \downarrow}-S_{j-2}^{(1 / t) \downarrow}-S_{j-1}^{(1 / t) \downarrow}=S_{j}^{(1 / t) \downarrow}$ for $j<k t(k \in \mathbb{Z})$.
Let $t=k t+r(0 \leq r<t)$. Then by making use of the table

$$
\begin{aligned}
e_{1, j}^{\prime} & =e_{1, j}^{\prime} \\
e_{2, j-t}^{\prime} & =e_{1, j-t}^{\prime} \quad-e_{2, j-t-2}^{\prime}-e_{2, j-t-1}^{\prime} \\
& \cdots \\
e_{k, t+r}^{\prime} & =e_{k-1, t+r}^{\prime}-e_{k, t+r-2}^{\prime}-e_{k, t+r-1}^{\prime} \\
e_{k+1, r}^{\prime} & =e_{k, r}^{\prime} \quad-e_{k+1, r-2}^{\prime}-e_{k+1, r-1}^{\prime}
\end{aligned}
$$

we have

$$
\begin{aligned}
S_{j}^{(1 / t) \downarrow} & =e_{1, j}^{\prime}+e_{2, j-t}^{\prime}+\cdots+e_{k, t+r}^{\prime}+e_{k+1, r}^{\prime} \\
& =e_{1, j}^{\prime}+\underbrace{\left(e_{1, j-t}^{\prime}+\cdots+e_{k-1, t+r}^{\prime}+e_{k, r}^{\prime}\right)}_{S_{j-t}^{(1 / t) \downarrow}}-\underbrace{\left(e_{2, j-t-2}^{\prime}+\cdots+e_{k+1, r-2}^{\prime}\right)}_{S_{j-2}^{(1 / t) \downarrow}-e_{1, j-2}^{\prime}} \\
& -\underbrace{\left(e_{2, j-t-1}^{\prime}+\cdots+e_{k+1, r-1}^{\prime}\right)}_{S_{j-1}^{(1 / t) \downarrow}-e_{1, j-1}^{\prime}}=S_{j-t}^{(1 / t) \downarrow}-S_{j-2}^{(1 / t) \downarrow}-S_{j-1}^{(1 / t) \downarrow} .
\end{aligned}
$$

3. Reflected sequence of diagonal sums

Table 1 is about sequences of $1 / t$-slope descending diag. sums $S_{n}^{(1 / t) \downarrow}$ of T^{\prime} satisfying $S_{j-t}^{(1 / t) \downarrow}-S_{j-2}^{(1 / t) \downarrow}-S_{j-1}^{(1 / t) \downarrow}=S_{j}^{(1 / t) \downarrow}$ for all $j \geq t \geq 3$.

Refer A077889, A247920 OEIS to $\left\{S_{j}^{(1 / t) \downarrow}\right\}$ with $t=4,5$. If we display the numbers in $\left\{S_{n}^{(1 / 3) \downarrow}\right\}$ in reverse order then $\{\cdots, 5,-8,4,1,-3,2,0,-1,1\}$ corresponds to the negative indexed part of the extended tribonacci sequence $\{\cdots, 5,-8,4,1,-3,2,0,-1,1,0,0,1,1,2,4,7, \cdots\}$. The rearranged sequence of $\left\{S_{n}^{(1 / t) \downarrow}\right\}(t \geq 3)$ in reverse order will be called the reflected sequence and denoted by $\left\{\hat{S}_{n}^{(1 / t) \downarrow} \mid n \in \mathbb{Z}\right\}$.

> Table 2. $\quad \hat{S}_{n}^{(1 / t) \downarrow} \quad(3 \leq t \leq 6)$ | $t \backslash n$ | -5 | -4 | -3 | $-2-101234567$ | 8 | 91011 | 12 | 13 | 14 | 15 | 16 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | $1-3$ | 2 | $0-11001124713$ | 1744481149 | 274504 | 18271705 | 3136 | 5768 | | | | $4-2 \quad 0 \quad 1 \quad 0-110001011 \quad 2 \quad 2 \quad 4 \quad 5 \quad 8 \quad 11 \quad 17 \quad 24$ $5 \begin{array}{llllllllllllll}5 & 1-1 & 1 & 0-110000100 & 1 & 1 & 1 & 1 & 2 & 3 & 3 & 4 & 6 & 8 \\ 10\end{array}$ $6 \begin{array}{llllllllllllll}6 & 0-1 & 1 & 0-110000010 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 2 & 3 & 2\end{array}$

So the reflected sequence $\left\{\hat{S}_{n}^{(1 / 3) \downarrow} \mid n \in \mathbb{Z}\right\}$ is the extended tribonacci sequence satisfying $\hat{S}_{n-3}^{(1 / 3) \downarrow}+\hat{S}_{n-2}^{(1 / 3) \downarrow}+\hat{S}_{n-1}^{(1 / 3) \downarrow}=\hat{S}_{n}^{(1 / 3) \downarrow}$ for $n \in \mathbb{Z}$.

Theorem 7. For $t \geq 3$, a recurrence rule is $\hat{S}_{n+t}^{(1 / t) \downarrow}=\hat{S}_{n+2}^{(1 / t) \downarrow}+\hat{S}_{n+1}^{(1 / t) \downarrow}+$ $\hat{S}_{n}^{(1 / t) \downarrow}$, and the limit of $\frac{\hat{S}_{n}^{(1 / t) \downarrow}}{\hat{S}_{n-1}^{(1 / t) \downarrow}}$ in $\left\{\hat{S}_{n}^{(1 / t) \downarrow} \mid n \in \mathbb{Z}\right\}$ is a real root of $x^{t}-x^{2}-x-1=0$.

Proof. From the recurrence $S_{j-t}^{(1 / t) \downarrow}=S_{j-2}^{(1 / t) \downarrow}+S_{j-1}^{(1 / t) \downarrow}+S_{j}^{(1 / t) \downarrow}$, if we consider $j=-n(n>0)$ then $S_{-(n+t)}^{(1 / t) \downarrow}=S_{-(n+2)}^{(1 / t) \downarrow}+S_{-(n+1)}^{(1 / t) \downarrow}+S_{-n}^{(1 / t) \downarrow}$, so we have
$\hat{S}_{n+t}^{(1 / t) \downarrow}=\hat{S}_{n+2}^{(1 / t) \downarrow}+\hat{S}_{n+1}^{(1 / t) \downarrow}+\hat{S}_{n}^{(1 / t) \downarrow}$ for any $n \in \mathbb{Z}$.
By dividing the both sides of the recurrence by $\hat{S}_{n-1}^{(1 / t) \downarrow}$ we have

$$
\frac{\hat{S}_{n}^{(1 / t) \downarrow}}{\hat{S}_{n-1}^{(1-t) \downarrow}}=\frac{1}{\frac{\hat{S}_{n-1}^{(1 / t) \downarrow}}{\hat{S}_{n-t+2}^{(1 / t) \downarrow}}}+\frac{1}{\frac{\hat{S}_{n-1}^{(1 / t) \downarrow}}{\hat{S}_{n-t+1}^{(1 / t) \downarrow}}}+\frac{1}{\frac{\hat{S}_{n-1}^{(1 / t) \downarrow}}{\hat{S}_{n-t}^{(1 / t) \downarrow}}} .
$$

So if let $r=\lim _{n \rightarrow \infty} \frac{\hat{S}_{n}^{(1 / t) \downarrow}}{\hat{S}_{n-1}^{(1 / t) \downarrow}}$ then $r=\frac{1}{r^{t-3}}+\frac{1}{r^{t-2}}+\frac{1}{r^{t-1}}$, and r is a real root of the polynomial $x^{t}-x^{2}-x-1=0$.

An interesting connection of $\hat{S}_{n}^{(1 / t) \downarrow}$ with trinomial table T is as follows.

Theorem 8. Let $r_{k}(k \geq 0)$ be the k th row of T. Then inner product of r_{k} and $2 k+1$ consecutive terms $\left\{\hat{S}_{n}^{(1 / t) \downarrow}\right\}$ yields $\left(\hat{S}_{n-2 k}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / t) \downarrow}, \hat{S}_{n}^{(1 / t) \downarrow}\right) \circ$ $r_{k}=\hat{S}_{n+(t-2) k}^{(1 / t) \downarrow}$.

Proof. Let $t=3$. Clearly $\left(\hat{S}_{n-2}^{(1 / 3) \downarrow}, \hat{S}_{n-1}^{(1 / 3) \downarrow}, \hat{S}_{n}^{(1 / 3) \downarrow}\right) \circ r_{1}=\hat{S}_{n+1}^{(1 / 3) \downarrow}$, for $r_{1}=(1,1,1)$.

Since $r_{2}=(1,2,3,2,1)=(1,1,1,0,0)+(0,1,1,1,0)+(0,0,1,1,1)$ by (\star), if we write it by $r_{2}=\left(r_{1}, 0,0\right)+\left(0, r_{1}, 0\right)+\left(0,0, r_{1}\right)$ then

$$
\begin{aligned}
& \left(\hat{S}_{n-4}^{(1 / 3) \downarrow}, \hat{S}_{n-3}^{(1 / 3) \downarrow}, \hat{S}_{n-2}^{(1 / 3) \downarrow}, \hat{S}_{n-1}^{(1 / 3) \downarrow}, \hat{S}_{n}^{(1 / 3) \downarrow) \circ r_{2}}\right. \\
& =\left(\hat{S}_{n-4}^{(1 / 3) \downarrow}, \hat{S}_{n-3}^{(1 / 3) \downarrow}, \hat{S}_{n-2}^{(1 / 3) \downarrow}\right) \circ r_{1}+\left(\hat{S}_{n-3}^{(1 / 3) \downarrow}, \hat{S}_{n-2}^{(1 / 3) \downarrow,}, \hat{S}_{n-1}^{(1 / 3) \downarrow}\right) \circ r_{1} \\
& \quad+\left(\hat{S}_{n-2}^{(1 / 3) \downarrow}, \hat{S}_{n-1}^{(1 / 3) \downarrow}, \hat{S}_{n}^{(1 / 3) \downarrow}\right) \circ r_{1} \\
& =\hat{S}_{n-1}^{(1 / 3) \downarrow}+\hat{S}_{n}^{(1 / 3) \downarrow}+\hat{S}_{n+1}^{(1 / 3) \downarrow}=\hat{S}_{n+2}^{(1 / 3) \downarrow}
\end{aligned}
$$

by Theorem 7. Assume the identity in the theorem is true with respect to r_{k-1}. Since r_{k} equals $\left(r_{k-1}, 0,0\right)+\left(0, r_{k-1}, 0\right)+\left(0,0, r_{k-1}\right)$, we have
$\left(\hat{S}_{n-2 k}^{(1 / 3) \downarrow}, \hat{S}_{n-2 k+1}^{(1 / 3) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / 3) \downarrow}, \hat{S}_{n}^{(1 / 3) \downarrow}\right) \circ r_{k}$
$=\left(\hat{S}_{n-2 k}^{(1 / 3) \downarrow}, \cdots, \hat{S}_{n-2}^{(1 / 3) \downarrow}\right) \circ r_{k-1}+\left(\hat{S}_{n-2 k+1}^{(1 / 3) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / 3) \downarrow}\right) \circ r_{k-1}$ $+\left(\hat{S}_{n-2 k+2}^{(1 / 3) \downarrow}, \cdots, \hat{S}_{n}^{(1 / 3) \downarrow}\right) \circ r_{k-1}$
$=\hat{S}_{n-2+(k-1)}^{(1 / 3) \downarrow}+\hat{S}_{n-1+(k-1)}^{(1 / 3) \downarrow}+\hat{S}_{n+(k-1)}^{(1 / 3) \downarrow}=\hat{S}_{n+(k-1)+1}^{(1 / 3) \downarrow}=\hat{S}_{n+(t-2) k}^{(1 / 3) \downarrow}$,
by the induction hypothesis and Theorem 7 .
When $t=4$, we also can see from Theorem 7 that

$$
\begin{aligned}
& \left(\hat{S}_{n-2}^{(1 / 4) \downarrow}, \hat{S}_{n-1}^{(1 / 4) \downarrow}, \hat{S}_{n}^{(1 / 4) \downarrow}\right) \circ r_{1} \\
& =\hat{S}_{n-2}^{(1,4) \downarrow}+\hat{S}_{n-1}^{(1) / 4) \downarrow}+\hat{S}_{n}^{(1 / 4) \downarrow}=\hat{S}_{n+2}^{(1 / 4) \downarrow}=\hat{S}_{n+(t-2)}^{(1 / 4) \downarrow},
\end{aligned}
$$

and also

$$
\begin{aligned}
& \left(\hat{S}_{n-4}^{(1 / 4) \downarrow}, \hat{S}_{n-3}^{(1 / 4) \downarrow}, \hat{S}_{n-2}^{(1 / 4) \downarrow}, \hat{S}_{n-1}^{(1 / 4) \downarrow}, \hat{S}_{n}^{(1 / 4) \downarrow}\right) \circ r_{2} \\
& =\left(\hat{S}_{n-4}^{(1 / 4) \downarrow}, \hat{S}_{n-3}^{(1 / 4) \downarrow}, \hat{S}_{n-2}^{(1) 4) \downarrow}\right) \circ r_{1}+\left(\hat{S}_{n-3}^{(1 / 4) \downarrow}, \hat{S}_{n-2}^{(1 / 4) \downarrow}, \hat{S}_{n-1}^{(1 / 4) \downarrow}\right) \circ r_{1} \\
& \quad+\left(\hat{S}_{n-2}^{(1 / 4) \downarrow}, \hat{S}_{n-1}^{(1 / 4) \downarrow}, \hat{S}_{n}^{(1 / 4) \downarrow}\right) \circ r_{1} \\
& =\hat{S}_{n}^{(1 / 4) \downarrow}+\hat{S}_{n+1}^{(1-4) \downarrow}+\hat{S}_{n+2}^{(1 / 4) \downarrow}=\hat{S}_{n+4}^{(1 / 4) \downarrow}=\hat{S}_{n+(t-2) 2}^{(1 / 4) \downarrow} .
\end{aligned}
$$

Now assume $\left(\hat{S}_{n-2(k-1)}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / t) \downarrow}, \hat{S}_{n}^{(1 / t) \downarrow}\right) \circ r_{k-1}=\hat{S}_{n+(t-2)(k-1)}^{(1 / t) \downarrow}$ for any $t \geq 3$ and $k>1$. Then

$$
\begin{aligned}
& \left(\hat{S}_{n-2 k}^{(1 / t) \downarrow}, \hat{S}_{n-2 k+1}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / t) \downarrow}, \hat{S}_{n}^{(1 / t) \downarrow}\right) \circ r_{k} \\
& =\left(\hat{S}_{n-2 k}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n-2}^{(1 / t) \downarrow}\right) \circ r_{k-1}+\left(\hat{S}_{n-2 k+1}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n-1}^{(1 / t) \downarrow}\right) \circ r_{k-1} \\
& \quad+\left(\hat{S}_{n-2 k+2}^{(1 / t) \downarrow}, \cdots, \hat{S}_{n}^{(1 / t) \downarrow}\right) \circ r_{k-1} \\
& =\hat{S}_{n-2+(t-2)(k-1)}^{(1 / t) \downarrow}+\hat{S}_{n-1+(t-2)(k-1)}^{(1 / t) \downarrow}+\hat{S}_{n+(t-2)(k-1)}^{(1 / t) \downarrow} \\
& =\hat{S}_{n-2+(t-2)(k-1)+t}^{(1 / t) \downarrow}=\hat{S}_{n+(t-2) k}^{(1 / t) \downarrow},
\end{aligned}
$$

by Theorem 7. This finishes the proof.
Since $\left\{\hat{S}_{n}^{(1 / 3) \downarrow} \mid n \in \mathbb{Z}\right\}$ corresponds to the extended tribonacci sequence, the numbers $\hat{S}_{n}^{(1 / 3) \downarrow}(n \geq 1)$ can be graphically explained by $1 / 1$-slope ascending diag. sums of T, while $\hat{S}_{n}^{(1 / 3) \downarrow}(n \leq 0)$ are $1 / 3$-slope descending diag. sums of T^{\prime}. Then it is natural to ask graphical description of $\hat{S}_{n}^{(1 / t) \downarrow}(n \geq 1)$ over T for any $t \geq 3$. For this purpose, similar to $S_{n}^{(t / u) \uparrow}$ and $S_{n}^{(t / u) \downarrow}$ over T^{\prime}, we shall use notations $\sigma_{i}^{(t / u) \uparrow}$ and $\sigma_{j}^{(t / u) \downarrow}$ over T. The former means the t / u-slope ascending diag. sum starting from $e_{i, 0}$ while the latter is the descending diag. sum starting from $e_{0, j}$ over T. For instance $\sigma_{i}^{(t) \uparrow}=\sigma_{i}^{(t / 1) \uparrow}=e_{i, 0}+e_{i-t, 1}+e_{i-2 t, 2}+\cdots$ and $\sigma_{j}^{(1 / t) \downarrow}=e_{0, j}+e_{1, j-t}+e_{2, j-2 t}+\cdots$.

THEOREM 9. $\hat{S}_{n}^{(1 / 3) \downarrow}=\sigma_{n-3}^{(1) \downarrow}=\sigma_{n-3}^{(1) \uparrow}$. And $\hat{S}_{n}^{(1 / 4) \downarrow}=\sigma_{n-4}^{(1 / 2) \downarrow}$.
Proof. The 1-slope descending diag. sums over T clearly satisfy $\left\{\sigma_{n-3}^{(1) \downarrow} \mid\right.$ $n \geq 3\}=\{1,1,2,4,7,13, \cdots\}=\left\{\sigma_{n-3}^{(1) \uparrow} \mid n \geq 3\right\}$, which is the tribonacci numbers. So by $\left\{\hat{S}_{n}^{(1 / 3) \downarrow}\right\}=\{1,1,2,4,7, \cdots\}$ in Table 2 , the proof of the first identity is clear.

The first few numbers of $1 / 2$-slope descending diag. sums over T are

$$
\left\{\sigma_{n-4}^{(1 / 2) \downarrow} \mid n \geq 4\right\}=\{1,0,1,1,2,2,4,5,8,11,17, \cdots\}
$$

where this equals $\left\{\hat{S}_{n}^{(1 / 4) \downarrow}\right\}=\{1,0,1,1,2,2,4,5,8,11,17, \cdots\}$ (see Table 2). In fact, $\sigma_{10}^{(1 / 2) \downarrow}=\underbrace{e_{0,10}+e_{1,8}+e_{2,6}}_{0}+\underbrace{e_{3,4}+e_{4,2}+e_{5,0}}_{17}=\hat{S}_{14}^{(1 / 4) \downarrow}$. Since the first few numbers in sequences $\left\{\hat{S}_{n}^{(1 / 4) \downarrow}\right\}$ and $\left\{\sigma_{n-4}^{(1 / 2) \downarrow}\right\}$ correspond each other, it is enough to show that $\left\{\sigma_{j}^{(1 / 2) \downarrow}\right\}$ satisfies the recurrence $\sigma_{j}^{(1 / 2) \downarrow}+\sigma_{j+1}^{(1 / 2) \downarrow}+\sigma_{j+2}^{(1 / 2) \downarrow}=\sigma_{j+4}^{(1 / 2) \downarrow}$, that is the same pattern of $\hat{S}_{n}^{(1 / 4) \downarrow}$ in Theorem 7. In fact,

$$
\begin{aligned}
& \sigma_{j}^{(1 / 2) \downarrow}+\sigma_{j+1}^{(1 / 2) \downarrow}+\sigma_{j+2}^{(1 / 2) \downarrow} \\
& \quad=\left(e_{0, j}+e_{1, j-2}+e_{2, j-4}+\cdots\right)+\left(e_{0, j+1}+e_{1, j-1}+e_{2, j-3}+\cdots\right) \\
& \quad+\left(e_{0, j+2}+e_{1, j}+e_{2, j-2}+\cdots\right) .
\end{aligned}
$$

Then by considering each columnwise sum, we have

$$
\begin{aligned}
& \sigma_{j}^{(1 / 2) \downarrow}+\sigma_{j+1}^{(1 / 2) \downarrow}+\sigma_{j+2}^{(1 / 2) \downarrow}=e_{1, j+2}+e_{2, j}+e_{3, j-2}+e_{4, j-5}+\cdots \\
& \quad=e_{0, j+4}+\left(e_{1, j+2}+e_{2, j}+e_{3, j-2}+e_{4, j-5}+\cdots\right)=\sigma_{j+4}^{(1 / 2) \downarrow}
\end{aligned}
$$

because $e_{0, j+4}=0$ for all $j \geq 0$ and the recurrence (\star) of T.

$$
\text { Clearly } \sigma_{11}^{(1) \downarrow}=\underbrace{e_{0,11}+\cdots+e_{3,8}}+\underbrace{e_{4,7}+e_{5,6}+\cdots+e_{11,0}}_{4+45+126+161+112+45+10+1=504}=\hat{S}_{14}^{(1 / 3) \downarrow} \text {. }
$$

Let $\sigma_{(a, b)}^{(1 / 2) \uparrow}$ and $\sigma_{(a, b)}^{(1 / 2) \downarrow}$ be $1 / 2$-slope ascending and descending diag. sums starting from the component $e_{a, b}$ of T. The next theorem further explains $\hat{S}_{n}^{(1 / 4) \downarrow}$ in relation to certain $1 / 2$-slope diag. in T.

Theorem 10. $\hat{S}_{n}^{(1 / 4) \downarrow}=\sigma_{(0, n-4)}^{(1 / 2) \downarrow}=\left\{\begin{array}{ll}\sigma_{\left(\frac{n-4}{4}, 0\right)}^{(1 / 2) \uparrow} & \text { if } n \equiv 0(\bmod 2) \\ \sigma_{\left(\frac{n-5}{2}, 1\right)}^{(1,2)} & \text { if } n \equiv 1(\bmod 2)\end{array}\right.$.
Proof. Since $\sigma_{(0, n-4)}^{(1 / 2) \downarrow}=\sigma_{n-4}^{(1 / 2) \downarrow}$, the first equality is due to Theorem 9 . Now we look at a $1 / 2$-slope descending diag. sum in T, for example, $\sigma_{(0,12)}^{(1 / 2) \downarrow}=\underbrace{e_{0,12}+e_{1,10}+e_{2,8}}+\underbrace{e_{3,6}+\cdots+e_{6,0}}_{1+19+15+1=36}=\hat{S}_{4+12}^{(1 / 4) \downarrow}$. Also it can be explained as the increasing diagonal sum $e_{6,0}+e_{5,2}+e_{4,4}+e_{3,6}=36=$ $\sigma_{(6,0)}^{(1 / 2) \uparrow}$.

In case of $n=2 k \geq 4$, the first few numbers $\sigma_{\left(\frac{n-4}{2}, 0\right)}^{(1 / 2) \uparrow}$ are in Table 3, where it shows $\left\{\sigma_{\left(\frac{n-4}{2}, 0\right)}^{(1 / 2) \uparrow}\right\}=\{1,1,2,4,8,17,36,77,165, \cdots\}=\left\{\hat{S}_{n}^{(1 / 4) \downarrow} \mid\right.$ n : even\}.

Similarly when $n=2 k+1 \geq 4$, the first few numbers $\sigma_{\left(\frac{n-5}{2}, 1\right)}^{(1 / 2) \uparrow}$ are in Table 4 , where it shows that $\left\{\sigma_{\left(\frac{n-5}{2}, 1\right)}^{(1 / 2) \uparrow}\right\}=\{0,1,2,5,11,24,52,112,241, \cdots\}=$ $\left\{\hat{S}_{n}^{(1 / 4) \downarrow} \mid n\right.$: odd $\}$. This completes the proof

In fact Theorem 10 corresponds to the following table.

\[

\]

References

[1] E. Choi, Diagonal sums of negative pascal table, JP Journal of Algebra, Number Theory and Applications 39 (2017), 457-477.
[2] V. E. Hoggatt and M. Bicknell, Diagonal sums of the trinomial triangle, Fibo. Quart. 12 (1974), 47-50.
[3] K. Kuhapatanakul and L. Sukruan, The generalized tribonacci numbers with negative subscripts, Integers 14 (2014), A32.
[4] K. Kuhapatanakul and L. Sukruan, n-tribonacci triangles and applications, Int. J. Math. Edu. in Science and Technology, 45 (7) (2014), 1068-1113.
[5] E. Kilic, Tribonacci sequences with certain indices and their sums, Ars. Comb. 86 (2008), 13-22.
[6] J. Lee, A note on the negative Pascal triangle, Fibo. Quart. 32 (1994), 269-270.
[7] C.W. Puritz, Extending Pascal's triangle upwards, Math. Gaz. 65 (431) (1981), 42-22.

Eunmi Choi

Department of Mathematics
Hannam University
Daejon, Korea
E-mail: emc@hnu.kr

Yuna Oh

Department of Mathematics
Hannam University
Daejon, Korea
E-mail: yuna8706@gmail.com

[^0]: Received January 31, 2019. Revised July 27, 2019. Accepted September 10, 2019. 2010 Mathematics Subject Classification: 05A10, 11R11.
 Key words and phrases: trinomial table, tribonacci sequence, diagonal sum.
 (c) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

