
Korean J. Math. 27 (2019), No. 2, pp. 445–463
https://doi.org/10.11568/kjm.2019.27.2.445

A BANACH ALGEBRA OF SERIES OF FUNCTIONS

OVER PATHS

Dong Hyun Cho†∗ and Mo A Kwon

Abstract. Let C[0, T ] denote the space of continuous real-valued
functions on [0, T ]. On the space C[0, T ], we introduce a Banach
algebra of series of functions which are generalized Fourier-Stieltjes
transforms of measures of finite variation on the product of simplex
and Euclidean space. We evaluate analytic Feynman integrals of the
functions in the Banach algebra which play significant roles in the
Feynman integration theory and quantum mechanics.

1. Introduction

Let C0[0, T ] denote the classical Wiener space, that is, the space of
continuous real-valued functions on the interval [0, T ] with x(0) = 0.
On C0[0, T ], Cameron and Storvick [2] introduced a Banach algebra S ′′
which is the space of series of generalized Fourier-Stieltjes transforms of
the C-valued finite Borel measures over ∆n×Rn, where ∆n is a simplex,
that is, ∆n = {(t1, . . . , tn) : 0 = t0 < t1 < · · · < tn < T}. They also
showed that S ′′ is isometrically embedded in the Banach algebra S ′, the
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space of generalized Fourier-Stieltjes transforms of the complex Borel
measures on the space of functions of bounded variation on [0, T ].

On the other hand, let C[0, T ] denote an analogue of a generalized
Wiener space, the space of continuous real-valued functions on the in-
terval [0, T ]. On C[0, T ], Ryu [9, 10] introduced a finite measure wα,β;ϕ

and investigated its properties, where α, β : [0, T ] → R are continuous
functions such that β is strictly increasing, and ϕ is an arbitrary finite
measure on the Borel class B(R) of R. On this space (C[0, T ], wα,β;ϕ),
the author [3] introduced an Itô type integral Iα,β which generalizes
the Paley-Wiener-Zygmund integrals on C[0, T ], and in [4,5] he derived
two Banach algebras S̄α,β;ϕ and S̄ ′α,β;ϕ by using Iα,β, which generalize
the Cameron-Storvick’s Banach algebra S and S ′, respectively, with the
mean function and the variance function determined by α and β.

In this paper, we introduce a Banach algebra S̄ ′′α,β;ϕ which is defined
over paths in C[0, T ] and consists of series of generalized Fourier-Stieltjes
transforms of measures on ∆n × Rn. Then, we will prove that S̄ ′′α,β;ϕ is

continuously embedded in S̄ ′α,β;ϕ. As an application, we derive evalua-

tion formulas for the analytic Feynman integrals of functions in S̄ ′′α,β;ϕ

which play significant roles in Feynman integration theory and quantum
mechanics. In particular, if α(t) = 0, β(t) = t for t ∈ [0, T ], and ϕ = δ0

which is the Dirac measure concentrated at 0, then S̄ ′′α,β;ϕ is reduced
to S ′′ so that the results of this paper generalize those in [2]. We also
note that every path in C[0, T ] starts at an arbitrary point in R so that
C[0, T ] generalizes C0[0, T ].

2. An analogue of a generalized Wiener space

In this section we introduce an analogue of a generalized Wiener space
with preliminaries which will be used in the next sections.

Let mL denote the Lebesgue measure on B(R). Let α and β be ab-
solutely continuous real-valued functions on [0, T ] such that β is strictly
increasing and |α|′(t)+β′(t) > 0 for t ∈ [0, T ], where |α| denotes the total
variation of α. For ~tn = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn ≤ T ,
let J~tn : C[0, T ]→ Rn+1 be the function given by

J~tn(x) = (x(t0), x(t1), . . . , x(tn)).

For
∏n

j=0Bj in B(Rn+1), the subset J−1
~tn

(
∏n

j=0Bj) of C[0, T ] is called an

interval I and let C be the set of all such intervals I. Define a premeasure
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mα,β;ϕ on C by

mα,β;ϕ(I) =

∫
B0

∫
∏n
j=1Bj

W (~tn, ~un, u0)dmn
L(~un)dϕ(u0),

where

W (~tn, ~un, u0) =

[
1∏n

j=1 2π[β(tj)− β(tj−1)]

] 1
2

× exp

{
−1

2

n∑
j=1

[uj − α(tj)− uj−1 + α(tj−1)]2

β(tj)− β(tj−1)

}
for ~un = (u1, . . . , un). The Borel σ-algebra B(C[0, T ]) of C[0, T ] with
the supremum norm, coincides with the smallest σ-algebra generated by
C and there exists a unique positive finite measure wα,β;ϕ on B(C[0, T ])
with wα,β;ϕ(I) = mα,β;ϕ(I) for I ∈ C. This measure wα,β;ϕ is called
an analogue of a generalized Wiener measure on (C[0, T ],B(C[0, T ]))
according to ϕ [9, 10]. We now have the following theorem [9].

Theorem 2.1. If f : Rn+1 → C is a Borel measurable function, then
the following equality holds:∫

C[0,T ]

f(x(t0), x(t1), . . . , x(tn))dwα,β;ϕ(x)

∗
=

∫
Rn+1

f(u0, u1, . . . , un)W (~tn, ~un, u0)dmn
L(~un)dϕ(u0),

where
∗
= means that if either side exists, then both sides exist and they

are equal.

Let F : C[0, T ] → C be a measurable function and suppose that the
integral

JF (λ) ≡
∫
C[0,T ]

F (λ−
1
2x)dwα,β;ϕ(x)

exists as a finite number for all λ > 0. If there exists a function J∗F (λ)
analytic in

C+ ≡ {λ ∈ C : Reλ > 0}

such that J∗F (λ) = JF (λ) for all λ > 0, then J∗F (λ) is defined to be a gen-
eralized analytic Wiener wα,β;ϕ-integral of F over C[0, T ] with parameter
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λ and it is denoted by∫ anwλ

C[0,T ]

F (x)dwα,β;ϕ(x) = J∗F (λ)

for λ ∈ C+. Let q be a nonzero real number. If
∫ anwλ
C[0,T ]

F (x)dwα,β;ϕ(x)

has a limit as λ approaches −iq through C+, then we call it a generalized
analytic Feynman wα,β;ϕ-integral of F over C[0, T ] with parameter q and
it is denoted by∫ anfq

C[0,T ]

F (x)dwα,β;ϕ(x) = lim
λ→−iq

∫ anwλ

C[0,T ]

F (x)dwα,β;ϕ(x).

We emphasize that ϕ need not be a probability measure so that wα,β;ϕ

also need not be a probability measure.
We observe that the functions α and β induce the obvious Lebesgue-

Stieltjes measure να,β on [0, T ] by να,β(E) =
∫
E
d(|α| + β)(t) for a

Lebesgue measurable subset E of [0, T ]. Define L2
α,β[0, T ] to be the

space of functions on [0, T ] that are square integrable with respect to
να,β, that is,

L2
α,β[0, T ] =

{
f : [0, T ]→ R

∣∣∣∣∫ T

0

[f(t)]2dνα,β(t) <∞
}
.

The space L2
α,β[0, T ] is a Hilbert space and has the inner product [8]

〈f, g〉α,β =

∫ T

0

f(t)g(t)dνα,β(t) for f, g ∈ L2
α,β[0, T ].

Note that the space L2
α,β[0, T ] is separable. Let S[0, T ] denote the col-

lection of all step functions on [0, T ]. For f in L2
α,β[0, T ], let {φn}∞n=1 be

a sequence of the step functions in S[0, T ] with limn→∞ ‖φn− f‖α,β = 0.
Define Iα,β(f) by the L2(C[0, T ])-limit

Iα,β(f)(x) = lim
n→∞

∫ T

0

φn(t)dx(t)

for all x ∈ C[0, T ] for which this limit exists, where
∫ T

0
φn(t)dx(t) denotes

the Riemann-Stieltjes integral of φn with respect to x. We note that
Iα,β(f)(x) exists for wα,β;ϕ a.e. x ∈ C[0, T ] and it is independent of
choice of the sequence {φn}∞n=1 in S[0, T ] to define it [3].

Let Mα,β be the class of complex measures of finite variation on
L2
α,β[0, T ] with Borel σ-algebra B(L2

α,β[0, T ]) of L2
α,β[0, T ] as its class



A Banach algebra of series of functions over paths 449

of measurable sets. If µ ∈ Mα,β, then we set ‖µ‖ = varµ, the total
variation of µ over L2

α,β[0, T ]. Let S̄α,β;ϕ be the space of functions of the
form

F (x) =

∫
L2
α,β [0,T ]

exp{iIα,β(f)(x)}dµ(f)(1)

for all x ∈ C[0, T ] for which the integral exists, where µ ∈ Mα,β. Here
we take

‖F‖ = inf{‖µ‖},
where the infimum is taken over all µ’s so that F and µ are related by
(1). We note that F is well-defined for wα,β;ϕ a.e. x ∈ C[0, T ] and it
is an integrable function of x on C[0, T ]. Moreover, S̄α,β;ϕ is a Banach
algebra with unit over C [5].

Let B[0, T ] be the space of real-valued, right-continuous functions of
bounded variation on [0, T ] that vanish at T . Let A′ be the σ-algebra of
subsets of B[0, T ] generated by the class of sets of the form

{v ∈ B[0, T ] : 〈v, f〉α,β < λ},
where f and λ range over all elements of L2

α,β[0, T ] and all positive real
numbers, respectively. LetM(B[0, T ]) be the class of complex measures
of finite variation defined on subsets of B[0, T ] with A′ as its class of
measurable sets. If µ ∈ M(B[0, T ]), we set ‖µ‖ = varµ over B[0, T ].
Let S̄ ′α,β;ϕ be the space of functions of the form

F (x) =

∫
B[0,T ]

exp

{
i

∫ T

0

v(t)dx(t)

}
dµ(v)(2)

for wα,β;ϕ a.e. x ∈ C[0, T ], where µ ∈M(B[0, T ]). Here we take

‖F‖′ = inf{‖µ‖},
where the infimum is taken over all µ’s so that F and µ are related by (2).
The space S̄ ′α,β;ϕ is a Banach algebra with unit over C. Moreover, S̄ ′α,β;ϕ

is continuously embedded in S̄α,β;ϕ, but need not be isometrically [4].

3. The Banach algebra S̄ ′′α,β;ϕ

3.1. The Banach space S̄ ′′n,α,β;ϕ. Let M′′
n be the class of bounded

complex Borel measures on ∆n × Rn. By Lemma 4.3 in [2], the space
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M′′
n is complete under the norm ‖µ‖ =

∫
∆n×Rn d|µ|(~t, ~v) for µ ∈ M′′

n,
that is, M′′

n is a Banach space.

For x ∈ C[0, T ], ~t = (t1, . . . , tn) and ~v = (v1, . . . , vn), let

Jn(x,~t, ~v) = exp

{
i

n∑
j=1

vj[x(tj)− x(0)]

}
.

Define a relation ∼ on M′′
n such that µ1 ∼ µ2 for µ1, µ2 ∈M′′

n if∫
∆n×Rn

Jn(x,~t, ~v)dµ1(~t, ~v) =

∫
∆n×Rn

Jn(x,~t, ~v)dµ2(~t, ~v)

for wα,β;ϕ a.e. x ∈ C[0, T ]. It is obvious that ∼ is an equivalence
relation on M′′

n. Let M̄′′
n be the set of equivalence classes by ∼. For

[µ1], [µ2] ∈ M̄′′
n and c ∈ C, define [µ1]+[µ2] = [µ1 +µ2] and c[µ1] = [cµ1].

It is obvious that the addition and scalar multiplication are well-defined,
and M̄′′

n is a linear space.

Lemma 3.1. Define ‖[µ]‖ = inf{‖µ1‖ : µ1 ∈ [µ]} for [µ] ∈ M̄′′
n. Then

(M̄′′
n, ‖ · ‖) is a normed space over C.

Proof. It remains to prove that ‖ · ‖ is a norm on M̄′′
n. It is clear that

‖[0]‖ = 0. Suppose that ‖[µ]‖ = 0 for [µ] ∈ M̄′′
n. Then for wα,β;ϕ a.e.

x ∈ C[0, T ] we have∣∣∣∣∫
∆n×Rn

Jn(x,~t, ~v)dµ(~t, ~v)

∣∣∣∣ =

∣∣∣∣∫
∆n×Rn

Jn(x,~t, ~v)dµ1(~t, ~v)

∣∣∣∣ ≤ ‖µ1‖

for all µ1 ∈ [µ] so that we have∣∣∣∣∫
∆n×Rn

Jn(x,~t, ~v)dµ(~t, ~v)

∣∣∣∣ ≤ inf{‖µ1‖ : µ1 ∈ [µ]} = ‖[µ]‖ = 0

which implies ∫
∆n×Rn

Jn(x,~t, ~v)dµ(~t, ~v) = 0.

Now we have [µ] = [0]. Let c ∈ C and [µ] ∈ M̄′′
n. If c = 0, then

‖c[µ]‖ = |c|‖[µ]‖. Suppose that c 6= 0. Then

‖c[µ]‖ = inf{‖σ‖ : σ ∈ [cµ]}

= inf

{
|c|
∥∥∥∥1

c
σ

∥∥∥∥ :
1

c
σ ∈ [µ]

}
= |c| inf{‖τ‖ : τ ∈ [µ]} = |c|‖[µ]‖.



A Banach algebra of series of functions over paths 451

Moreover let [µ1], [µ2] ∈ M̄′′
n and let ε > 0 arbitrary. Take σ1 ∈ [µ1] and

σ2 ∈ [µ2] such that

‖σ1‖ < ‖[µ1]‖+
ε

2
and ‖σ2‖ < ‖[µ2]‖+

ε

2
.

Then

‖[µ1] + [µ2]‖ = ‖[σ1 + σ2]‖ ≤ ‖σ1 + σ2‖
≤ ‖σ1‖+ ‖σ2‖ < ‖[µ1]‖+ ‖[µ2]‖+ ε.

Since ε is arbitrary, we have

‖[µ1] + [µ2]‖ ≤ ‖[µ1]‖+ ‖[µ2]‖.

Now ‖ · ‖ is a norm on M̄′′
n which completes the proof.

Theorem 3.2. M̄′′
n is a Banach space.

Proof. It only remains to be shown that M̄′′
n is complete under the

norm given by Lemma 3.1. Let {[µn]}∞n=1 be a Cauchy sequence of
elements in M̄′′

n and take a subsequence {[µnk ]}∞k=1 of {[µn]}∞n=1 satisfying

‖[µnk ]− [µnk−1
]‖ < 1

2k
for k = 2, 3, . . . .

Take σ1 ∈ [µn1 ] with

‖σ1‖ < ‖[µn1 ]‖+ 1.

For each k = 2, 3, . . ., take σk ∈ [µnk − µnk−1
] with

‖σk‖ < ‖[µnk ]− [µnk−1
]‖+

1

2k
.

Then we have
∞∑
k=1

‖σk‖ < ‖µn1‖+
∞∑
k=1

1

2k−1
<∞.

Let µ =
∑∞

k=1 σk ∈M′′
n. Then we also have

‖[µ]− [µnk ]‖ =

∥∥∥∥[µ]−
k∑
j=1

[σj]

∥∥∥∥ ≤ ∥∥∥∥ ∞∑
j=k+1

σj

∥∥∥∥ ≤ ∞∑
j=k+1

‖σj‖

≤
∞∑

j=k+1

1

2j−1
=

1

2k−1
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which converges to 0 as k → ∞. Since {[µn]}∞n=1 is a Cauchy sequence
it follows that

lim
n→∞

‖[µ]− [µn]‖ = 0

so that M̄′′
n is complete as desired.

For each positive integer n, let S̄ ′′n,α,β;ϕ be the set of functions of the
form

F (x) =

∫
∆n×Rn

Jn(x,~t, ~v)dµ(~t, ~v)(3)

for wα,β;ϕ a.e. x ∈ C[0, T ], where µ ∈M′′
n. Here we take

‖F‖′′n = inf{‖µ‖},

where the infimum is taken over all µ’s so that F and µ are related by
(3). By using the same method as the proof of Lemma 3.1, we can prove
that (S̄ ′′n,α,β;ϕ, ‖·‖′′n) is a normed space over C. Note that for F ∈ S̄ ′′n,α,β;ϕ,
we have |F (x)| ≤ ‖F‖′′n for wα,β;ϕ a.e. x ∈ C[0, T ].

Remark 3.3. In the space S̄ ′′n,α,β;ϕ, the function F ∈ S̄ ′′n,α,β;ϕ does not
determine the measure µ in (3) uniquely [2].

Theorem 3.4. S̄ ′′n,α,β;ϕ is a Banach space. Moreover, S̄ ′′n,α,β;ϕ is iso-

metrically isomorphic to M̄′′
n.

Proof. Define φ : M̄′′
n → S̄ ′′n,α,β;ϕ by

φ([µ])(x) =

∫
∆n×Rn

Jn(x,~t, ~v)dµ(~t, ~v)

for wα,β;ϕ a.e. x ∈ C[0, T ]. If [µ1] = [µ2], then µ1 ∼ µ2. By the definition
of ∼, we have φ([µ1]) = φ([µ2]) which implies that φ is well-defined. Now
we have for wα,β;ϕ a.e. x ∈ C[0, T ]

φ(c1[µ1] + c2[µ2])(x) = φ([c1µ1 + c2µ2])(x)

=

∫
∆n×Rn

Jn(x,~t, ~v)d(c1µ1 + c2µ2)(~t, ~v)

= c1φ([µ1])(x) + c2φ([µ2])(x).
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By the definition of S̄ ′′n,α,β;ϕ, it is obvious that φ is onto. If φ([µ1]) =
φ([µ2]), then∫

∆n×Rn
Jn(x,~t, ~v)dµ1(~t, ~v) = φ([µ1])(x)

= φ([µ2])(x) =

∫
∆n×Rn

Jn(x,~t, ~v)dµ2(~t, ~v)

for wα,β;ϕ-a.e. x ∈ C[0, T ] so that µ1 ∼ µ2. Thus we have [µ1] = [µ2]
which implies that φ is one-to-one. Moreover, we have

‖φ([µ1])‖′′n =

∥∥∥∥∫
∆n×Rn

Jn(·,~t, ~v)dµ1(~t, ~v)

∥∥∥∥′′
n

= inf{‖µ‖ : µ ∈M′′
n and µ ∼ µ1}

= inf{‖µ‖ : µ ∈ [µ1]} = ‖[µ1]‖

so that φ is an isometric, bijective linear transformation. Since M̄′′
n is

complete by Theorem 3.2, S̄ ′′n,α,β;ϕ is a Banach space. Now the proof is
completed.

Remark 3.5. It is not obvious whether S̄ ′′n,α,β;ϕ is a Banach algebra
or not.

By Theorem 3.4, we have the following corollary.

Corollary 3.6. For each positive integer j, let Fj ∈ S̄ ′′n,α,β;ϕ with

∞∑
j=1

‖Fj‖′′n <∞.

Then the function F defined by

F (x) =
∞∑
j=1

Fj(x) for wα,β;ϕ a.e. x ∈ C[0, T ],

converges absolutely and uniformly, and is an element of S̄ ′′n,α,β;ϕ.

The following theorem is needed to prove our main results. Its proof
is similar to that of Lemma 4.0 in [2].

Theorem 3.7. If n and k are positive integers and F ∈ S̄ ′′n,α,β;ϕ, then

we have S̄ ′′n,α,β;ϕ ⊆ S̄ ′′n+k,α,β;ϕ and ‖F‖′′n+k ≤ ‖F‖′′n.
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3.2. The Banach space S̄∧n,α,β;ϕ. Let M∧
n be the class of bounded

complex Borel measures on (0, T ]n × Rn. The space M∧
n is a Banach

space under the norm ‖µ‖ =
∫

(0,T ]n×Rn d|µ|(~t, ~v) for µ ∈ M∧
n . Define a

relation ≈ on M∧
n satisfying that µ1 ≈ µ2 for µ1, µ2 ∈M∧

n if∫
(0,T ]n×Rn

Jn(x,~t, ~v)dµ1(~t, ~v) =

∫
(0,T ]n×Rn

Jn(x,~t, ~v)dµ2(~t, ~v)

for wα,β;ϕ a.e. x ∈ C[0, T ]. Then, ≈ is an equivalence relation on M∧
n .

Let M̄∧
n be the set of equivalence classes by ≈. For [µ1], [µ2] ∈ M̄∧

n and
c ∈ C, define [µ1] + [µ2] = [µ1 + µ2] and c[µ1] = [cµ1]. It is obvious
that the addition and scalar multiplication are well-defined, and M̄∧

n is
a linear space. Define ‖[µ]‖ = inf{‖µ1‖ : µ1 ∈ [µ]} for [µ] ∈ M̄∧

n . Then,
one can show that M̄∧

n is a Banach space by using the same process as
the proofs of Lemma 3.1 and Theorem 3.2.

For each positive integer n, let S̄∧n,α,β;ϕ be the set of functions of the
form

F (x) =

∫
(0,T ]n×Rn

Jn(x,~t, ~v)dµ(~t, ~v)(4)

for wα,β;ϕ a.e. x ∈ C[0, T ], where µ ∈M∧
n . Here we take

‖F‖∧n = inf{‖µ‖},
where the infimum is taken over all µ’s so that F and µ are related
by (4). By using the same method as the proof of Theorem 3.4, we
can prove that (S̄∧n,α,β;ϕ, ‖ · ‖∧n) is a Banach space over C and S̄∧n,α,β;ϕ is

isometrically isomorphic to M̄∧
n . Clearly we have S̄ ′′n,α,β;ϕ ⊆ S̄∧n,α,β;ϕ and

for F ∈ S̄ ′′n,α,β;ϕ

‖F‖∧n ≤ ‖F‖′′n
since every measure inM′′

n can be extended to be inM∧
n without increas-

ing its variation. We note that if F ∈ S̄∧n,α,β;ϕ, then |F (x)| ≤ ‖F‖∧n for
wα,β;ϕ a.e. x ∈ C[0, T ]. Furthermore, we have similar forms of Corollary
3.6 and Theorem 3.7.

3.3. The Banach algebra S̄ ′′α,β;ϕ. Define S̄ ′′0,α,β;ϕ and S̄∧0,α,β;ϕ to be the
space of constant functions and define their norms to be their absolute
values. Let S̄ ′′α,β;ϕ be the space of functions F on C[0, T ] defined by

F (x) =
∞∑
n=0

Fn(x) for wα,β;ϕ a.e. x ∈ C[0, T ],(5)
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where Fn ∈ S̄ ′′n,α,β;ϕ and
∑∞

n=0 ‖Fn‖′′n < ∞. Since |Fn(x)| ≤ ‖Fn‖′′n
for wα,β;ϕ a.e. x ∈ C[0, T ], the series in (5) converges absolutely and
uniformly over C[0, T ]. For F ∈ S̄ ′′α,β;ϕ, define ‖F‖′′ by

‖F‖′′ = inf

{ ∞∑
n=0

‖Fn‖′′n
}
,

where the infimum is taken over all representations of F given by (5).
Moreover, we have

|F (x)| ≤ ‖F‖′′ for wα,β;ϕ a.e. x ∈ C[0, T ].(6)

Lemma 3.8. (S̄ ′′α,β;ϕ, ‖ · ‖′′) is a normed space over C.

Proof. It is obvious that S̄ ′′α,β;ϕ is a linear space over C. If F (x) =

0 ∈ S̄ ′′α,β;ϕ for wα,β;ϕ a.e. x ∈ C[0, T ], take Fn(x) = 0 ∈ S̄ ′′n,α,β;ϕ for
wα,β;ϕ a.e. x ∈ C[0, T ] so that F and {Fn} are related by (5). Then
‖F‖′′ = 0 clearly. For F ∈ S̄ ′′α,β;ϕ, suppose that ‖F‖′′ = 0. Then we have

F (x) = 0 for wα,β;ϕ a.e. x ∈ C[0, T ] by (6). Let c ∈ C and F ∈ S̄ ′′α,β;ϕ.
If c = 0, then ‖cF‖′′ = ‖0‖′′ = 0 = |c|‖F‖′′. Suppose that c 6= 0. If
F and {Fn} are related by (5), then cF and {cFn} are also related by
(5) so that ‖cF‖′′ ≤ |c|

∑∞
n=0 ‖Fn‖′′n which implies ‖cF‖′′ ≤ |c|‖F‖′′,

since {Fn} is arbitrary. Let ε > 0 arbitrary. Take a sequence {Gn} such
that cF and {Gn} are related by (5) with

∑∞
n=0 ‖Gn‖′′n < ‖cF‖′′ + ε.

Then F and {1
c
Gn} are related by (5) so that ‖F‖′′ ≤ 1

|c|
∑∞

n=0 ‖Gn‖′′n <
1
|c|(‖cF‖

′′+ ε). Hence |c|‖F‖′′ < ‖cF‖′′+ ε. Since ε is arbitrary, we have

|c|‖F‖′′ ≤ ‖cF‖′′ so that |c|‖F‖′′ = ‖cF‖′′. Let G ∈ S̄ ′′α,β;ϕ. Let F,G and
{Hn}, {In} be related by (5), respectively, with

∑∞
n=0 ‖Hn‖′′n < ‖F‖′′+ ε

2

and
∑∞

n=0 ‖In‖′′n < ‖G‖′′ +
ε
2
. Then ‖F + G‖′′ ≤

∑∞
n=0 ‖Hn + In‖′′n ≤∑∞

n=0 ‖Hn‖′′n +
∑∞

n=0 ‖In‖′′n < ‖F‖′′ + ‖G‖′′ + ε. Since ε is arbitrary, we
have ‖F +G‖′′ ≤ ‖F‖′′ + ‖G‖′′ which completes the proof.

The following lemma is needed to prove one of our main results. Its
proof is motivated from Lemma 4.1 in [2].

Lemma 3.9. For each n ≥ 0,

S̄ ′′n,α,β;ϕ ⊆ S̄ ′α,β;ϕ

and if F ∈ S̄ ′′n,α,β;ϕ, then

‖F‖′ ≤ ‖F‖′′n.
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Proof. The case n = 0 is trivial so let n ≥ 1 be given and let F
given by (3) be an element of S̄ ′′n,α,β;ϕ, where µ ∈ M′′

n. Let Bn[0, T ] be
a subset of B[0, T ] consisting of right continuous step functions which
have no more than n points of discontinuities. Define a function Φ :
∆n × Rn → Bn[0, T ] by

Φ(~t, ~v) = u~t,~v,

where

u~t,~v(s) =

{ ∑n
j=p vj if tp−1 ≤ s < tp, p = 1, . . . , n
0 if tn ≤ s ≤ T

for (~t, ~v) = ((t1, . . . , tn), (v1, . . . , vn)) ∈ ∆n × Rn. Let A′n be the class of
subsets E ⊆ Bn[0, T ] such that Φ−1(E) is a Borel subset of ∆n ×Rn. It
is clear that A′n is a σ-algebra. Define a measure σ on A′n as follows: If
E is an element of A′n, let

σ(E) = µ(Φ−1(E)).

It is clear that σ is a bounded complex measure on A′n and ‖σ‖ ≤ ‖µ‖.
We now define a complex measure σ̂ on B[0, T ] as follows: For E ⊆
B[0, T ],

σ̂(E) = σ(E ∩Bn[0, T ]),

whenever the latter exists. Then σ̂ is defined on A′ by the following
assertion: Let

E = {u ∈ B[0, T ] : 〈u, f〉α,β < λ},
where f ∈ L2

α,β[0, T ] and λ ∈ R. We have

〈Φ(~t, ~v), f〉α,β = 〈u~t,~v, f〉α,β =
n∑
j=1

n∑
l=j

vl

∫
[tj−1,tj)

f(t)dνα,β(t)

=
n∑
l=1

vl

l∑
j=1

∫
[tj−1,tj)

f(t)dνα,β(t)

=
n∑
l=1

vl

∫
[0,tl)

f(t)dνα,β(t)

so that it follows from the definition of E and Φ that

Φ−1(E ∩Bn[0, T ]) =

{
(~t, ~v) : (~t, ~v) ∈ ∆n × Rn,

n∑
j=1

vjθ(tj) < λ

}
,
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where θ(t) =
∫ t

0
f(s)dνα,β(s). Since θ is continuous on [0, T ], Φ−1(E ∩

Bn[0, T ]) is a Borel set, and E ∩ Bn[0, T ] ∈ A′n. Since A′ generated by
E of this form, it follows that σ̂(E) is at least defined on A′. Clearly,
σ̂ ∈M(B[0, T ]) and ‖σ̂‖ ≤ ‖σ‖. We define for each positive integer m,

Jm(w) = exp

{
q

m
2πi

}
, where

2π(q − 1)

m
< w ≤ 2πq

m
for q = 1, 2, . . . ,m

and note that limm→∞ Jm(w) = exp{iw} boundedly. Then for wα,β;ϕ

a.e. x ∈ C[0, T ],

lim
m→∞

Fm(x) = F (x),

where

Fm(x) =

∫
∆n×Rn

Jm

( n∑
j=1

vj[x(tj)− x(0)]

)
dµ(~t, ~v).

For wα,β;ϕ a.e. x ∈ C[0, T ], let

Em,q =

{
u ∈ B[0, T ]

∣∣∣∣2π(q − 1)

m
<

∫ T

0

u(t)dx(t) ≤ 2πq

m

}
.

Since∫ T

0

Φ(~t, ~v)(t)dx(t) =
n∑
j=1

n∑
l=j

vl

∫
[tj−1,tj)

dx(t)

=
n∑
l=1

vl

l∑
j=1

∫
[tj−1,tj)

dx(t) =
n∑
l=1

vl[x(tl)− x(0)]

we have

Φ−1(Em,q ∩Bn[0, T ])

=

{
(~t, ~v) : (~t, ~v) ∈ ∆n × Rn,Φ(~t, ~v) ∈ Em,q

}
=

{
(~t, ~v) ∈ ∆n × Rn

∣∣∣∣2π(q − 1)

m
<

n∑
j=1

vj[x(tj)− x(0)] ≤ 2πq

m

}
≡ δm,q.
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Now we have

Fm(x) =
m∑
q=1

exp

{
q

m
2πi

}
µ(δm,q) =

m∑
q=1

exp

{
q

m
2πi

}
σ̂(Em,q)

=

∫
B[0,T ]

Jm

(∫ T

0

u(t)dx(t)

)
dσ̂(u).

By letting m→∞, we have for wα,β;ϕ a.e. x ∈ C[0, T ]

F (x) = lim
m→∞

Fm(x) =

∫
B[0,T ]

exp

{
i

∫ T

0

u(t)dx(t)

}
dσ̂(u) ∈ S̄ ′α,β;ϕ

so that S̄ ′′n,α,β;ϕ ⊆ S̄ ′α,β;ϕ and ‖F‖′ ≤ ‖σ̂‖ ≤ ‖σ‖ ≤ ‖µ‖. Since µ is
arbitrary measure such that F and µ are related by (3), we have ‖F‖′ ≤
‖F‖′′n and the lemma is proved.

The following theorem is one of our main results. By using Lemma 3.9,
we can prove this theorem.

Theorem 3.10. The space S̄ ′′α,β;ϕ is contained in S̄ ′α,β;ϕ and if F ∈
S̄ ′′α,β;ϕ, then ‖F‖′ ≤ ‖F‖′′.

Note that S̄ ′′n,α,β;ϕ is a Banach space by Theorem 3.4. The following
theorem is needed to prove one of our main results. Its proof is similar
to the proof of Lemma 4.5 in [2].

Theorem 3.11. The space S̄ ′′α,β;ϕ is complete under the norm ‖F‖′′
for F ∈ S̄ ′′α,β;ϕ.

The following lemma is needed to prove our main results. Its proof is
similar to the proof of Lemma 4.6 in [2].

Lemma 3.12. If G ∈ S̄∧n,α,β;ϕ, we can express G in the form

G = F +H,

where F ∈ S̄ ′′n,α,β;ϕ and H ∈ S̄∧n−1,α,β;ϕ if n > 1 and H = 0 if n = 1, and
where

‖G‖∧n ≥ ‖F‖′′n + ‖H‖∧n−1.

The following lemma follows from repeated applications of Lemma
3.12.
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Lemma 3.13. If G ∈ S̄∧n,α,β;ϕ, we can express G in the form

G =
n∑
q=1

Fq,

where Fq ∈ S̄ ′′q,α,β;ϕ for q = 1, . . . , n. Moreover, ‖G‖∧n ≥
∑n

q=1 ‖Fq‖′′q .
By Lemma 3.13, we have the following theorem.

Theorem 3.14. For each n = 0, 1, 2, . . ., we have S̄∧n,α,β;ϕ = S̄ ′′n,α,β;ϕ,
and if F ∈ S∧n,α,β;ϕ, then ‖F‖∧n = ‖F‖′′n.

We now have the following lemma and its proof is similar to that of
Lemma 4.9 in [2].

Lemma 3.15. If F ∈ S̄∧m,α,β;ϕ, G ∈ S̄∧n,α,β;ϕ and H(x) = F (x)G(x) for

wα,β;ϕ a.e. x ∈ C[0, T ], where m,n = 0, 1, 2, . . ., then H ∈ S̄∧m+n,α,β;ϕ

and ‖H‖∧m+n ≤ ‖F‖∧m‖G‖∧n .

The following corollary immediately follows from Theorem 3.14 and
Lemma 3.15.

Corollary 3.16. 1. For n = 1, 2, . . ., M̄′′
n is isometrically isomor-

phic to M̄∧
n .

2. If we replace S̄∧n,α,β;ϕ by S̄ ′′n,α,β;ϕ in Lemma 3.15, the results hold
still.

By Theorem 3.11 and Corollary 3.16, one can prove the following
theorem which is one of our main results. For a detailed proof, see that
of Theorem 4.2 in [2].

Theorem 3.17. The space S̄ ′′α,β;ϕ is a Banach algebra with the norm
‖ · ‖′′.

4. Evaluations of the analytic Feynman integrals

Feynman integrals were introduced by Feynman in his formulation of
quantum mechanics, but they are inadequate mathematically [6]. One of
approaches to define rigorously them, is to use an analytic continuation
from real to imaginary time, which is now called the analytic Feynman
integral [7].

In this section we evaluate analytic Feynman integrals of the functions
in S̄ ′′α,β;ϕ, which play important roles in treating the heat equation and
the Schrödinger equation by integration over the Wiener space [1].
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Theorem 4.1. Let n > 0. Let Fn(∈ S̄ ′′n,α,β;ϕ) and µn(∈ M′′
n) be

related by (3). Then for λ > 0

JFn(λ) = ϕ(R)

∫
∆n×Rn

exp

{
− 1

2λ

n∑
l=1

[β(tl)− β(tl−1)]

( n∑
j=l

vj

)2

(7)

+iλ−
1
2

n∑
l=1

n∑
j=l

[α(tl)− α(tl−1)]vj

}
dµn(~t, ~v),

where ~t = (t1, . . . , tn) and ~u = (u1, . . . , un). In addition, if there exists
Mn > 0 satisfying

∫
∆n×Rn

exp

{
Re(iλ−

1
2 )

n∑
l=1

n∑
j=l

[α(tl)− α(tl−1)]vj

}
d|µn|(~t, ~v)(8)

≤ Mn

for any λ ∈ C+, then
∫ anwλ
C[0,T ]

Fn(x)dwα,β;ϕ(x) is given by the right-hand

side of (7). Moreover, if (8) holds for all λ ∈ {z ∈ C : Re z ≥ 0, z 6= 0},
then for any nonzero real q,

∫ anfq
C[0,T ]

Fn(x)dwα,β;ϕ(x) is given by the right-

hand side of (7) with replacing λ by −iq.

Proof. By Theorem 2.1, we have for λ > 0

JFn(λ)

=

∫
C[0,T ]

∫
∆n×Rn

Jn(λ−
1
2x,~t, ~v)dµn(~t, ~v)dwα,β;ϕ(x)

=

∫
∆n×Rn

∫
C[0,T ]

exp

{
iλ−

1
2

n∑
j=1

vj[x(tj)− x(0)]

}
dwα,β;ϕ(x)dµn(~t, ~v)

=

∫
∆n×Rn

[ n∏
j=1

1

2π[β(tj)− β(tj−1)]

] 1
2
∫
Rn+1

exp

{
iλ−

1
2

n∑
j=1

vj[uj − u0]

−1

2

n∑
j=1

[uj − α(tj)− uj−1 + α(tj−1)]2

β(tj)− β(tj−1)

}
dmn

L(~u)dϕ(u0)dµn(~t, ~v).
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For j = 1, . . . , n, let zj = uj − uj−1. Then uj =
∑j

l=1 zl + u0 so that

JFn(λ)

=

∫
∆n×Rn

[ n∏
j=1

1

2π[β(tj)− β(tj−1)]

] 1
2
∫
Rn+1

exp

{
iλ−

1
2

n∑
l=1

n∑
j=l

vjzl

−1

2

n∑
j=1

[zj − α(tj) + α(tj−1)]2

β(tj)− β(tj−1)

}
dmn

L(~z)dϕ(u0)dµn(~t, ~v),

where ~z = (z1 . . . , zn). By a simple calculation, we have

JFn(λ) = ϕ(R)

∫
∆n×Rn

exp

{
− 1

2λ

n∑
l=1

[β(tl)− β(tl−1)]

( n∑
j=l

vj

)2

+iλ−
1
2

n∑
l=1

n∑
j=l

[α(tl)− α(tl−1)]vj

}
dµn(~t, ~v)

which implies (7). If (8) holds, then we have the remainder part of this
theorem by the analytic continuation and the dominated convergence
theorem.

By letting Mn = ‖µn‖ in (8) of Theorem 4.1, we now have the following
corollary.

Corollary 4.2. Let n > 0. Let Fn(∈ S̄ ′′n,α,β;ϕ) and µn(∈ M′′
n) be

related by (3). If α is a constant function on [0, T ], then we have, for
any λ ∈ C+,∫ anwλ

C[0,T ]

Fn(x)dwα,β;ϕ(x)(9)

= ϕ(R)

∫
∆n×Rn

exp

{
− 1

2λ

n∑
l=1

[β(tl)− β(tl−1)]

( n∑
j=l

vj

)2}
dµn(~t, ~v).

Moreover, for any nonzero real q,
∫ anfq
C[0,T ]

Fn(x)dwα,β;ϕ(x) is given by the

right-hand side of (9) with replacing λ by −iq.

Theorem 4.3. Let F be given by (5). Then for λ > 0

JF (λ) =
∞∑
n=0

JFn(λ)(10)
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where JF0(λ) = F0ϕ(R) and JFn(λ) is given by (7) if n ≥ 1. In addition,
if for each positive integer n, there exists Mn > 0 satisfying (8) for any
λ ∈ C+ such that

∞∑
n=1

Mn <∞,(11)

then
∫ anwλ
C[0,T ]

F (x)dwα,β;ϕ(x) is given by∫ anwλ

C[0,T ]

F (x)dwα,β;ϕ(x) =
∞∑
n=0

∫ anwλ

C[0,T ]

Fn(x)dwα,β;ϕ(x),(12)

where
∫ anwλ
C[0,T ]

F0(x)dwα,β;ϕ(x) = F0ϕ(R) and
∫ anwλ
C[0,T ]

Fn(x)dwα,β;ϕ(x) is

given by the right-hand side of (7) if n ≥ 1. Moreover, if (8) and
(11) hold for all λ ∈ {z ∈ C : Re z ≥ 0, z 6= 0}, then for any nonzero real

q,
∫ anfq
C[0,T ]

F (x)dwα,β;ϕ(x) is given by∫ anfq

C[0,T ]

F (x)dwα,β;ϕ(x) =
∞∑
n=0

∫ anfq

C[0,T ]

Fn(x)dwα,β;ϕ(x),(13)

where
∫ anfq
C[0,T ]

F0(x)dwα,β;ϕ(x) = F0ϕ(R) and
∫ anfq
C[0,T ]

Fn(x)dwα,β;ϕ(x) is

given by the right-hand side of (7) with replacing λ by −iq if n ≥ 1.

Corollary 4.4. Let F be given by (5). If α is a constant function
on [0, T ], then

∫ anwλ
C[0,T ]

F (x)dwα,β;ϕ(x) exists for any λ ∈ C+ and it is

given by (12), where
∫ anwλ
C[0,T ]

Fn(x)dwα,β;ϕ(x) is expressed by (9) if n ≥ 1.

Moreover, for any nonzero real q,
∫ anfq
C[0,T ]

F (x)dwα,β;ϕ(x) is given by (13),

where
∫ anfq
C[0,T ]

Fn(x)dwα,β;ϕ(x) is expressed by (9) with replacing λ by −iq
if n ≥ 1.
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