
Korean J. Math. 27 (2019), No. 4, pp. 879–898
http://dx.doi.org/10.11568/kjm.2019.27.4.879

ON NUMERICAL RANGE AND NUMERICAL RADIUS

OF CONVEX FUNCTION OPERATORS

Khaoula Zaiz and Abdelouahab Mansour∗

Abstract. In this paper we prove some interesting inclusions con-
cerning the numerical range of some operators and the numerical
range of theirs ranges with a convex function. Further, we prove
some inequalities for the numerical radius. These inclusions and
inequalities are based on some classical convexity inequalities for
non-negative real numbers and some operator inequalities.

1. Introduction

Let B(H) be the algebra of all bounded linear operators on a complex
Hilbert space H. For all A ∈ B(H), we define the numerical range W (A)
as the collection of all complex numbers of the form 〈Ax, x〉 where x ∈ H.
More precisely

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.
Also, the numerical radius w(A) of A ∈ B(H) is the radius of the smallest
circle centered at the origin containing W (A). More precisely

w(A) = sup{|λ| : λ ∈ W (A)}.
The numerical range has been studied widely since the early years of
the last century. Previous research has established that the numerical
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range is a convex set (Toeplitz-Hausdorf theorem) and, the spectrum
contained in the closure of its numerical range. Moreover, we can extract
an algebraic properties of an operator A by studying his numerical range
and numerical radius. For example, A is self-adjoint operator if, and
only if, its numerical range is a part of R, A is positive if, and only
if, its numerical range is a part of R+, and an invertible operator A is
unitary if, and only if, numerical radius of A coincides with the numerical
radius of its inverse, for more information we refer the reader to [6] and
references therein.
Let f be a real valued function continuous defined on interval I (I ⊂ R)
and let A ∈ B(H) be self-adjoint have its spectrum in I. We define f(A)
by the familiar function calculus, see [14].
If f(t) ≥ 0 for any t ∈ σ(A), then f(A) ≥ 0, i.e. f(A) is a positive
operator on H. Moreover, if both f and g are real valued functions on
σ(A), then the following important property holds:

f(t) ≥ g(t) for any t ∈ σ(A) implies that f(A) ≥ g(A),

in the operator order of B(H).
A real valued continuous function f on an interval I is said to be convex
operator if

f((1− λ)A+ λB) ≤ (1− λ)f(A) + λf(B),

concave if

f((1− λ)A+ λB) ≥ (1− λ)f(A) + λf(B),

in the operator order, for all λ ∈ [0; 1] and for every self-adjoint operator
A and B on a Hilbert space H whose theirs spectra are contained in I.
Notice that a function f is function concave if −f is function convex.
A real valued continuous function f on an interval I is said to be mono-
tone operator if it is monotone with respect to the operator order, i.e.,

A ≤ B with σ(A), σ(B) ⊂ I imply f(A) ≤ f(B).

For some fundamental results on convex operator (concave operator
) and monotone function see [15] and the references therein. In this
paper we obtain a few additional results about the numerical range and
the numerical radius of convex function operator, we will give some basic
properties of the numerical range and the numerical radius of the convex
operator function.
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2. Preliminaries

To prove the numerical range inclusions and numerical radius inequal-
ities, we need several known lemmas. All these lemmas are concerning
the convex function properties.

Lemma 2.1. [9] (i) Assume that A ∈ B(H) is normal and U ∈ B(H)
is unitary, then for every real function on σ(A)

(2.1) f(U∗AU) = U∗f(A)U.

(ii) For every X ∈ B(H) and every real function on σ(XX∗).

(2.2) Xf(X∗X) = f(XX∗)X.

Lemma 2.2. [13] Let A ∈ B(H) be self-adjoint and assume that
σ(A) ⊆ [m,M ], for some scalars m, M with m ≤ M . If f is a con-
vex function on [m,M ], then

f

(
〈Ax, x〉

)
≤ 〈f(A)x, x〉,

for each x ∈ H with ‖x‖ = 1.

Lemma 2.3. [11] Let A ∈ B(H) be positive and let x ∈ H be any
unit vector. Then (i) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1.
(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.
(iii) If A is invertible, then 〈Arx, x〉 ≥ 〈Ax, x〉r for all r < 0 and x ∈ H,
with ‖x‖ = 1.

Lemma 2.4. [14] Let Aj ∈ B(H) be a self-adjoint operators with
σ(Aj) ⊆ [m,M ], i = 1, ..., n. For some scalars m < M and xj ∈ H, i =
1, ..., n, with

∑n
i=1 ‖xi‖ = 1. If f is convex function on [m,M ], then

f

( n∑
i=1

〈Aixi, xi〉
)
≤

n∑
i=1

〈f(Ai)xi, xi〉.

Lemma 2.5. [8] For any continuous function f defined on an interval
I the following conditions are equivalent:

(i) f is convex operator .
(ii) For each positive integer number n we have the inequality

(2.3) f

( n∑
i=1

A∗iXiAi

)
≤

n∑
i=1

A∗i f

(
Xi

)
Ai,
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for every n−tuple (X1, · · · , Xn) of bounded self-adjoint operators
on an arbitrary Hilbert space H with spectra contained in I and
every n-tuple (A1, · · · , An) of operators on H with

∑n
i=1A

∗
iAi = I.

(iii) f(V ∗XV ) ≤ V ∗f(X)V for each isometry V on an infinite-dimensional
Hilbert space H and every self-adjoint operator X with spectrum
in I.

(vi) Pf(PXP + s(1−P ))P ≤ Pf(X)P for each orthogonal projection
P on an infinite-dimensional Hilbert space H, every self-adjoint
operator X with spectrum in I and every s in I.

We finish this part by a lemma given a property of convex and concave
function.

Lemma 2.6. [1] Let A ∈ B(H) be self-adjoint and positive, α ≥ 1 and
f be non-negative function on [0,∞) with f(0) = 0.
(i) If f is convex, then f(αA) ≥ αf(A).
(ii) If f is concave, then αf(A) ≥ f(αA).

3. Main results

This section contains two part, the first consist to study some pro-
prieties of numerical range and radius of convex function for one or two
operators where we applied some of this result to special convex function
as exponential and power function , in the second part, we generalized
some result of the first part to the case of n operators.

3.1. Numerical range and radius for convex function operators.
We define the numerical range of convex function operator by

W (f(A)) = {〈f(A)x, x〉 : ‖x‖ = 1, x ∈ H},
such that A ∈ B(H) be self-adjoint.
W (f(A)) verified all the properties of the classical numerical range also
it is a convex set, as we show in the next theorem.

Theorem 3.1. Let A,B ∈ B(H) be self-adjoint, α ∈ [0, 1] and f be
a non-negative convex function, then
(i) W (f(αA+ (α− 1)B)) ⊆ αW (f(A)) + (α− 1)W (f(B)).
(ii) Suppose that X ∈ B(H) be isometry satisfies XX∗ = 1. Then

W (f(X∗AX)) ⊆ W (f(A)).

(iii) W (f(A)) ⊂ R.
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Proof. By definition we have

W (f(αA+ (α− 1)B)) ⊆ W (αf(A) + (α− 1)f(B))
⊆ αW (f(A)) + (α− 1)W (f(B)).

The proof of the second assertion, we have

f(X∗AX) ≤ X∗f(A)X,

then

W (f(X∗AX)) = {〈f(X∗AX)x, x〉 ‖x‖ = 1, x ∈ H}
⊆ {〈X∗f(A)Xx, x〉 ‖x‖ = 1, x ∈ H}
⊆ {〈f(A)x, x〉 ‖x‖ = 1, x ∈ H}.

It easy to check this assertion because A is self-adjoint and W (A) ⊆
R.

Remark 3.1. (i) The first inclusion in the previous theorem be equal-
ity if α = 0 or α = 1.
(ii) The second inequality in the previous theorem equivalent to

W (Pf(PAP + s(1− P ))P ) ⊂ W (f(A)),

for each orthogonal projection P on an infinite-dimensional Hilbert space
H, every self-adjoint operator A and s ∈ I.

The numerical radius has similar properties.

Theorem 3.2. Let f be a convex function on I. Then

w(f(αA+ (1− α)B)) ≤ αw(f(A)) + (α− 1)w(f(B)),

for all A,B ∈ B(H) be self-adjoint and 0 ≤ α ≤ 1. Further 0 ∈ I and
f(0) ≤ 0. Then

w(f(X∗AX)) ≤ w(f(A)),

for all A ∈ B(H) be self-adjoint, X ∈ B(H) such that XX∗ = I and X
commute with A.

Proof. For every unit vector x ∈ H and α ∈ [0, 1]

|〈f(αA+ (1− α)B)x, x〉| ≤ |〈[αf(A) + (1− α)f(B)]x, x〉|
(since f is convex)

= |α〈f(A)x, x〉+ (1− α)〈f(B)x, x〉|
≤ |α〈f(A)x, x〉|+ |(1− α)〈f(B)x, x〉|
≤ α|〈f(A)x, x〉|+ (1− α)|〈f(B)x, x〉|.

So that,
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w(f(αA+ (1− α)B))

= sup{|〈f(αA+ (1− α)B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|α〈f(A)x, x〉|+ |(1− α)〈f(B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{α|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}

+ sup{(1− α)|〈f(B)x, x〉| : x ∈ H, ‖x‖ = 1}
= αw(f(A)) + (1− α)w(f(B)).

To prove the second assertion, for any unit vector x ∈ H. Then, we have

|〈f(X∗AX)x, x〉| ≤ |〈X∗f(A)Xx, x〉|
(by Lemma 2.5(iii)).

So that

w(f(X∗AX)) = sup{|〈f(X∗AX)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈X∗f(A)Xx, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(A)).

Also, we have these inequalities for numerical radius.

Remark 3.2. Let f be a convex function on I, 0 ∈ I and f(0) ≤ 0.
Then

w(f(P ∗AP )) ≤ w(f(A)),

for all A ∈ B(H) be self-adjoint and P ∈ B(H) orthogonal projection.
And

w(Pf(PXP + s(1− P ))P ) ≤ w(f(X)),

for each orthogonal projection P , every self-adjoint operator A with
spectrum in I and every s in I.
Indeed. For every unit vector x ∈ H

w(f(PAP )) = sup{|〈f(PAP )x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈Pf(A)Px, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)Px, Px〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(A)).
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The second inequality

w(Pf(PXP + S(1− P ))P )

= sup{|〈Pf(PXP + S(1− P ))Px, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈Pf(A)Px, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)Px, Px〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(A)).

The follows from Theorem 3.2, taking f(t) = tr : r ≥ 0.

Corollary 3.1. Let A,B ∈ B(H) be self-adjoint. Then

w((A+B)r) ≤ 2r−1(w(Ar) + w(Br))

for all r ≤ 0.

The equivalence between the numerical radius and the norm have
been given this corollary.

Corollary 3.2. Let f be a convex function on I. Then

‖f(αA+ (1− α)B)‖ ≤ α‖f(A)‖+ (α− 1)‖f(B)‖,
for all A,B ∈ B(H) be self-adjoint and 0 ≤ α ≤ 1. Further 0 ∈ I and
f(0) ≤ 0. Then

‖f(X∗AX‖ ≤ ‖f(A)‖, .
where X ∈ B(H) such that XX∗ = I and X commute with A.

A particular case of Corollary 3.2, choosing the non-negative convex
function f(t) = |t|r, r ≥ 1 on (−∞,+∞), we find the inequality above

‖|A+B|r‖ ≤ 2r−1‖|A|r + |B|r‖.
Another result for numerical range and numerical radius.

Proposition 3.1. Let A ∈ B(H) be self-adjoint, α ≥ 1 and let f be
a non-negative function on (0,∞), with f(0) = 0.
(i) If f is convex, then αW (f(A)) ⊆ W (f(αA)).
(ii) If f is concave, then W (f(αA)) ⊆ αW (f(A)).

Proof. The result follows from Lemma 2.6.

We have similar result for the numerical radius.
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Theorem 3.3. Let A ∈ B(H) be self-adjoint, α ≥ 1 and let f be
non-negative function on (0,∞), with f(0) = 0.
(i) If f is convex, then w(αf(A)) ≤ w(f(αA)).
(ii) If f is concave, then w(f(αA)) ≤ αw(f(A)).

Proof. For any unit vector x ∈ H. Then

w(αf(A)) = sup{|〈αf(A)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(αA)x, x〉| : x ∈ H, ‖x‖}

( by Lemma 2.6)
= w(f(αA).

The proof of (ii) is similar to (i).

Corollary 3.3. Let A ∈ B(H) be self-adjoint, α ≥ 1 and let f be a
non-negative function on (0,∞), with f(0) = 0.
(i) If f is convex, then ‖αf(A)‖ ≤ ‖f(αA)‖.
(ii) If f is concave, then ‖f(αA)‖ ≤ α‖f(A)‖.

Remark 3.3.
• The Propositions 3.1, 3.3 and their corollaries may not be true if f not
non-negative function. To see this one may take f(t) = − log t.
• If, in addition, in Theorem 3.2 we assume that f is increasing (or
decreasing) we have the same previous result.

Every non-negative decreasing function f on [0,∞) satisfies f(2t) ≤
2f(t), t ∈ [0,∞). The next theorems give a new inequality for the nu-
merical range and numerical radius of convex function.

Theorem 3.4. Let f be a convex decreasing function on (0,∞) and
let A,B ∈ B(H) be self-adjoint. Then

W (f(A+B)) ⊂ W (f(A)) +W (f(B)).

Proof. Since f is decreasing convex function, we have

f(
A+B

2
) ≤ 1

2
(f(A) + f(B))

for all A,B ∈ B(H) be self-adjoint.
And, we have f(2t) ≤ 2f(t), then

f

(
2A+ 2B

2

)
≤ 1

2
f(2A+ 2B)

≤ f(A) + f(B).
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So, we have

W (f(A+B))

= {〈f(A+B)x, x〉 : x ∈ H, ‖x‖ = 1}
⊂ {〈f(A) + f(B)x, x〉 : x ∈ H, ‖x‖ = 1}
⊂ {〈f(A)x, x〉 : x ∈ H, ‖x‖ = 1}+ {〈f(B)x, x〉 : x ∈ H, ‖x‖ = 1}
= W (f(A)) +W (f(B)).

Similar result for the numerical radius.

Theorem 3.5. Let f be a convex decreasing function on (0,∞) and
let A,B ∈ B(H) be self-adjoint. Then

(3.1) w(f(A+B)) ≤ w(f(A)) + w(f(B)).

Proof. For every unit vector x ∈ H, we have∣∣∣∣〈f (A+B

2

)
x, x

〉∣∣∣∣ ≤ ∣∣∣∣〈(f(A) + f(B))x, x

〉∣∣∣∣
≤ |〈f(A)x, x〉|+ ≤ |〈f(B)x, x〉|.

So,

w(f(A+B))

= sup{|〈f(A+B)x, x〉| : x ∈ H, ‖x‖ = 1}
= sup{|〈f(A)x, x〉|+ |〈f(B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}+ sup{|〈f(B)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(A)) + w(f(B)).

Corollary 3.4. Let f be non-negative convex decreasing function.
Then,

‖f(A+B)‖ ≤ ‖f(A)‖+ ‖f(B)‖.

Theorem 3.6. Let f, g be non-negative continuous functions on (0,∞)
which satisfy inequality (3.1). Then, the functions f+g and f ◦g satisfy
also inequality (3.1).
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Proof. In order to prove that f +g satisfy inequality (3.1), we use the
fact that f and g are increasing. Then, for every unit vector x ∈ H. We
have

|〈(f + g)(A+B)x, x〉| = |〈(f(A+B) + g(A+B))x, x〉|
≤ |〈(f(A) + f(B) + g(A) + g(B))x, x〉|
≤ |〈(f(A) + g(A))x, x〉|+ |〈(f(B) + g(B)x, x〉|
= |〈(f + g)(A)x, x〉|+ |〈(f + g)(B)x, x〉|.

So that

w(f + g)(A+B)

= sup{|〈(f + g)(A+B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈(f + g)(A)x, x〉|+ |〈(f + g)(B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈(f + g)(A)x, x〉| : x ∈ H, ‖x‖ = 1}

+ sup{|〈(f + g)(B)x, x〉| : x ∈ H, ‖x‖ = 1}
= w((f + g)(A)) + w((f + g)(B)).

To prove the result of f ◦ g note that, for each unit vector x ∈ H.

|〈f ◦ g(A+B)x, x〉| ≤ |〈f(g(A) + g(B))x, x〉|
≤ |〈f(g(A)) + f(g(B))x, x〉|
≤ |〈f ◦ g(A)x, x〉|+ |〈f ◦ g(B)x, x〉|.

Then

w(f ◦ g)(A+B)
= sup{|〈f ◦ g(A+B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈(f ◦ g)(A)x, x〉|+ |〈(f ◦ g)(B)x, x〉| : x ∈ H, ‖x‖ = 1}
≤ sup{|〈(f ◦ g)(A)x, x〉| : x ∈ H, ‖x‖ = 1}
+ sup{|〈(f ◦ g)(B)x, x〉| : x ∈ H, ‖x‖ = 1}
= w((f ◦ g)(A)) + w((f ◦ g)(B)).

Theorem 3.7. Let A,B ∈ B(H) be self-adjoint satisfy A − B ≥ 0
and let f be a convex and differentiable function whose derivative f ′ is
continuous function. Then

w(f(A)− f(B)) ≤ w(f ′(A)) [2w(A) + 4w(B)] .

If B commute with A. Then

w(f(A)− f(B)) ≤ w(f ′(A)) [2‖A‖+ 4‖B‖] .
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Proof. First, we have for any differentiable convex function

(3.2) f(A)− f(B) ≤ f ′(A)(A−B).

For every unit vector x ∈ H. We have

w(f(A)− f(B)) ≤ w(f ′(A)(A−B))

( by Eq.(3.2))

≤ w(f ′(A)A) + w(f ′(A)B))

≤ 2w(f ′(A))w(A) + 4w(f ′(A))w(B)

= w(f ′A))[2w(A) + 4w(B)].

We notice here that f ′ commute with A every way, for that we found
the previous inequality.
If B commute with A, so B double commute with A because A and B
are self-adjoint operators and B commute with f ′(A). Then, during the
previous inequality, we have

w(f(A)− f(B)) ≤ w(f ′(A)) [2w(A) + 4w(B)]

≤ w(f ′(A)) [2‖A‖+ 4‖B‖] .

Corollary 3.5. Since f ′(A) commute with A and B, so f ′(A) com-
mute with A−B. Then, we obtain this result

w(f(A)− f(B)) ≤ w(f ′(A)) [‖A‖+ ‖B‖] .

Corollary 3.6. Let A,B ∈ B(H) be self-adjoint. Then

w(expA+ expB) ≤ expA(‖A‖+ ‖B‖).

Remark 3.4. If L is an affine function and f is a convex function,
then L ◦ f reserving all the properties of numerical range and numerical
radius of the convex function f .

Our next results based on the inequality of Mond and Pečarić.

Theorem 3.8. Let A, B ∈ B(H) be self-adjoints and α ∈ [0, 1]. If f
is a convex function on I, then

(i)
f(W (αA+ (1− α)B)) ⊂ αW (f(A)) + (α− 1)W (f(B)).

(ii) If X ∈ B(H) be isometry satisfies XX∗ = 1. Then

f(W (X∗AX)) ⊆ W (f(A)).
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Proof. (i) For every unit vector x ∈ H, we have
(3.3)

f

(
〈αA+ (1− α)Bx, x〉

)
≤ 〈f(αA+ (1− α)B)x, x〉 (by Lemma 2.2)

≤ α〈f(A)x, x〉+ (1− α)〈f(B)x, x〉 (by Theorem 3.1(1)).

So

f(W (A+ (1− α)B) ⊂ W (f(αA+ (1− α)B))

⊂ αW (f(A)) + (α− 1)W (f(B)).

(ii) For every unit vector x ∈ H, we have

(3.4)
f

(
〈X∗AXx, x〉

)
≤ 〈f(X∗AX)x, x〉 (by Lemma 2.2)

≤ 〈f(A)x, x〉 (by Theorem 3.1(2)).

So

f(W (X∗AX)) ⊂ W (f(X∗AX))

⊂ W (f(A)).

Similar result for the numerical radius.

Theorem 3.9. Let A, B ∈ B(H) be self-adjoints and α ∈ [0, 1]. If f
is a convex function on I, then

(i)

f(w(αA+ (1− α)B)) ≤ αw(f(A)) + (α− 1)w(f(B)).

(ii) If X ∈ B(H) be isometry satisfies XX∗ = 1. Then

f(w(X∗AX)) ≤ w(f(A)).

Proof. (i) For every unit vector x ∈ H and Eq.(3.3), we have

f(w(A+ (1− α)B)) = sup{f(|〈(αA+ (1− α)B)x, x〉|) : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(αA+ (1− α)B)x, x〉| : x ∈ H, ‖x‖ = 1}

= w(f(αA+ (1− α)B))

≤ αw(f(A)) + (α− 1)w(f(B)).
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(ii) for every unit vector x ∈ H and the Eq.(3.4), we have

f(w(X∗AX) = sup{f(|〈X∗AXx, x〉|) : x ∈ H, ‖x‖ = 1}
≤ sup{|〈f(X∗AX)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(X∗AX))

≤ w(f(A)).

The result of Theorem 3.9, also hold for the norm of operators.

Corollary 3.7. Let A, B ∈ B(H) be self-adjoints and α ∈ [0, 1]. If
f is a convex function on I, then

(i)
f(‖αA+ (1− α)B‖) ≤ α‖f(A)‖+ (α− 1)‖f(B)‖.

(ii) If X ∈ B(H) be isometry satisfies XX∗ = 1. Then

f(‖X∗AX‖) ≤ ‖f(A)‖.

If A is positive defined and we use the inequalities in Theorem 3.9,
for the exponential function that one obtains the following inequalities.

Corollary 3.8.
(i)

exp(w(αA+ (1− α)B)) ≤ αw(exp(A)) + (α− 1)w(exp(B)).

For each A, B be positives and self-adjoints operators and α ∈ [0, 1].
(ii)

exp(w(X∗AX)) ≤ w(exp(A)).

For every X be positive and isometry operators satisfies XX∗ = 1.

Also, we obtain another result if f is a concave function for example
the logarithm function.

Corollary 3.9. Let A,B ∈ B(H) be positives and self-adjoints and
α ∈ [0, 1], then

(i)

log(w(αA+ (1− α)B)) ≥ αw(log(A)) + (α− 1)w(log(B)).

For each A, B be positives and self-adjoints operators .
(ii)

log(w(X∗AX)) ≥ w(log(A)).

For every X be positive and isometry operator satisfy XX∗ = 1.
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The following property hold only if dimH <∞.

Theorem 3.10. Suppose that A ∈ B(H) be Hermitian and f be a
convex function, then

(i) The set W (f(A)) = {µ} if, and only if, f(A) = {µI}.
(ii) W (f(A)) is closed but not bounded set.
(iii) W (f(A)) ⊆ [0,+∞) if, and only if, A is positive operator.

Proof. The first condition follows from the fact W (A) = {µ} if, and
only if, A = µI, where µ ∈ R.
(ii) Let {xkf(Ak)xk k = 1, 2, 3, · · · } be a sequence in W (f(A)) converg-
ing to µ0 ∈ C where Ak be self-adjoint operator and xk is bounded, then
there is a subsequence xjk converging to x. We can further consider a
subsequence {Ajk}k≥1 of {Ak}k≥1 converging to A0. Then

{xjkf(Ajk)xjk, k = 1, 2, · · · } → {x0f(A0)x0, k = 1, 2, · · · }.
Thus, W (f(A)) is closed.
(iii) The condition follows from the fact W (A) = [0,+∞) if, and only
if, A is a positive operator.

Theorem 3.11. Assume that A ∈ B(H) be self-adjoint and U ∈
B(H) be unitary. For all convex function f on σ(A), we have

W (f(U∗AU)) = W (f(A)),

and for all X ∈ B(H) and every convex function f on σ(X∗X), we have

W (X(f(X∗X)) = W (f(XX∗)X).

Proof. (i) For every unit vector x ∈ H, we have

W (f(U∗AU)) = W (U∗f(A)U)

( by Eq.(2.1)),

= W (f(A)).

(ii) from the Eq.(2.2), can be verified readily.

Theorem 3.12. Assume that A ∈ B(H) be self-adjoint and U ∈
B(H) be unitary. For all convex function f on σ(A), we have

w(f(U∗AU)) = w(f(A)),

and for all X ∈ B(H) and every convex function f on σ(X∗X), we have

w(X(f(X∗X)) = w(f(XX∗)X).
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Proof. (i) For all unit vector x ∈ H, we have

|〈f(U∗AU)x, x〉| = |〈U∗f(A)Ux, x〉|
(by Eq.(2.1)).

So,

w(f(U∗AU)) = sup{|〈f(U∗AU)x, x〉| : x ∈ H, ‖x‖ = 1}
= sup{|〈U∗f(A)Ux, x〉| : x ∈ H, ‖x‖ = 1}
= sup{|〈f(A)x, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(A)).

(ii) For all unit vector x ∈ H, we have

|〈Xf(X∗X)x, x〉| = |〈f(XX∗)Xx, x〉|
by Eq.(2.2).

Then,

w(Xf(X∗X)) = sup{|〈Xf(X∗X)x, x〉| : x ∈ H, ‖x‖ = 1}
= sup{|〈f(XX∗)Xx, x〉| : x ∈ H, ‖x‖ = 1}
= w(f(XX∗)X).

Remark 3.5. The first assertion in Theorem 3.1, and the second
assertion in Theorem 3.2, are true for every real function whe A is normal
operator and U unitary operator.
If X is isometry operator in the second equality in previous theorem,
then

w((f(X∗X) = w(f(XX∗)).

Corollary 3.10. Let A ∈ B(H) be self-adjoint and U ∈ B(H)
unitary. for all convex function f on σ(A), we have

‖f(U∗AU)‖ = ‖f(A)‖,

and for all X ∈ B(H) and every convex function f on σ(X∗X), we have

‖X(f(X∗X))‖ = ‖f(XX∗)X‖.
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3.2. Inclusions and Inequalities for sum of n operators. Now, we
will generalize some results to the sum of n operators.

Theorem 3.13. LetA1, · · · , An ∈ B(H) be self-adjoint and let α1, · · · , αn

be positive real numbers such that
∑n

i=1 αi = 1. Then

1. W (f(
∑n

i=1 αiAi)) ⊂
∑n

i=1 αiW (f(Ai)) for every non-negative con-
vex function on (0,∞).

2. W (
∑n

i=1 αif(Ai)) ⊂ W (f(
∑n

i=1 αiAi)) for every non-negative con-
cave function on (0,∞).

Proof. Let f be convex function on (0,∞). Then

W (f(
n∑

i=1

αiAi)) = {〈f(
n∑

i=1

αiAi)xi, xi〉 : xi ∈ H,
n∑

i=1

‖xi‖ = 1}

⊂ {〈
n∑

i=1

αif(Ai)x, x〉 : xi ∈ H,
n∑

i=1

‖xi‖ = 1}}

⊂
n∑

i=1

αi{〈f(Ai)xi, xi〉 xi ∈ H,
n∑

i=1

‖xi‖ = 1}}

=
n∑

i=1

αiW (f(Ai)).

The proof of the second assertion similar to the first only for the concave
function.

The same result for the numerical radius.

Theorem 3.14. LetA1, · · · , An ∈ B(H) be self-adjoint and let α1, · · · , αn

be positive real numbers such that
∑n

i=1 αi = 1. Then

1. w(
∑n

i=1 αif(Ai)) ≤ w(f(
∑n

i=1 αiAi))for every non-negative con-
cave function on (0,∞).

2. w(f(
∑n

i=1 αiAi)) ≤
∑n

i=1 αiw(f(Ai)) for every non-negative con-
vex function on (0,∞).
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Proof. Let f be non-negative concave function on (0,∞). Then

w(
n∑

i=1

αif(Ai)) = sup{|〈
n∑

i=1

αif(Ai)xi, xi〉| : xi ∈ H,
n∑

i=1

‖xi‖ = 1}

≤ sup{|〈f(
n∑

i=1

αiAi)xi, xi〉| : xi ∈ H,
n∑

i=1

‖xi‖ = 1}

= w(f(
n∑

i=1

αiAi)).

The proof of the second assertion is similar to the first only for the
non-negative convex function.

Remark 3.6. Theorem 3.14 may not be true if f is not non-negative
function. To see this one make f(t) = − log t where t ∈ (0,+∞) for the
convex function and f(t) = −tr, where t ∈ (0,+∞) and r ≥ 1 for the
concave function.

Corollary 3.11. Let A1, · · · , An ∈ B(H), B1, · · · , Bn ∈ B(H) be
self-adjoint and let α1, · · · , αn be positive real numbers such that

∑n
i=1 αi =

1. Then

w(
n∑

i=1

αiAi +Bi)
r ≤

n∑
i=1

αr
i2

r−1(w(Ar
i ) + w(Br

i ))

for all r ≥ 1.

Corollary 3.12. Let A1, · · · , An ∈ B(H) be self-adjoint and let
α1, · · · , αn be positive real numbers such that

∑n
i=1 αi = 1. Then

1. ‖
∑n

i=1 αif(Ai)‖ ≤ ‖f(
∑n

i=1 αiAi)‖ for every non-negative concave
function on (0,∞).

2. ‖f(
∑n

i=1 αiAi)‖ ≤
∑n

i=1 αi‖f(Ai)‖ for every non-negative convex
function on (0,∞).

Our final result in this part is a consequence of Furuta-Mićić-Pečarić-Seo
inequality.

Theorem 3.15. LetAi ∈ B(H) be self-adjoints for each i ∈ {1, · · · , n}
and

∑n
i=1 αi = 1. If f is a convex function on I, then

1.

f(W (
n∑

i=1

αiAi)) ⊂
n∑

i=1

αiW (f(Ai)).
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2. If Xi ∈ B(H) be isometry satisfies
∑n

i=1XiX
∗
i = 1. Then

f(W (
n∑

i=1

XiAiX
∗
i )) ⊆

n∑
i=1

W (f(Ai)).

Proof. For the first assertion, we used the lemma ?? the we obtain
our result.
The second assertion is a consequence of the third assertion in Lemma
2.5 and the result of Theorem 3.1.

Also we can verified readily this property for the numerical radius.

Theorem 3.16. LetAi ∈ B(H) be self-adjoints for each i ∈ {1, · · · , n}
and

∑n
i=1 αi = 1. If f is a convex function on I, then

1.

f(w(
n∑

i=1

αiAi) ≤
n∑

i=1

αiw(f(Ai)).

2. If Xi ∈ B(H) be isometry satisfies
∑n

i=1XiX
∗
i = 1. Then

f(w(
n∑

i=1

XiAiX
∗
i )) ≤

n∑
i=1

w(f(Ai)).

We can extract the following from the above result.

Corollary 3.13. LetAi ∈ B(H) be self-adjoints for each i ∈ {1, · · · , n}
and

∑n
i=1 αi = 1. If f is a convex function on I, then

1.

f(‖
n∑

i=1

αiAi‖) ≤
n∑

i=1

αn
i ‖f(Ai)‖.

2. If Xi ∈ B(H) be isometry satisfies
∑n

i=1XiX
∗
i = 1. Then

f(‖
n∑

i=1

XiAiX
∗
i ‖) ≤

n∑
i=1

‖f(Ai)‖.

Furthermore, if f = xp where p > 1 we have.

Corollary 3.14.
1.

‖
n∑

i=1

αiAi‖p ≤
n∑

i=1

αn
i ‖A

p
i ‖.

For each Ai ∈ B(H) be positive, self-adjoints and for each i ∈ {1, · · · , n}
and

∑n
i=1 αi = 1.
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2.

‖
n∑

i=1

XiAiX
∗
i ‖p ≤

n∑
i=1

‖Ap
i ‖.

For every Xi be isometry operarors satisfies
∑n

i=1XiX
∗
i = 1.

And, if 0 < p < 1, we have

Corollary 3.15.
1.

‖
n∑

i=1

αiAi‖p ≥
n∑

i=1

αn
i ‖A

p
i ‖.

For each Ai ∈ B(H) be positive, self-adjoints and for each i ∈ {1, · · · , n}
and

∑n
i=1 αi = 1.

2.

‖
n∑

i=1

XiAiX
∗
i ‖p ≥

n∑
i=1

‖Ap
i ‖.

For every Xi be isometry operarors satisfies
∑n

i=1XiX
∗
i = 1.
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