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HYERS-ULAM-RASSIAS STABILITY OF A

QUADRATIC-CUBIC-QUARTIC FUNCTIONAL

EQUATION

Yang-Hi Lee

Abstract. In this paper, we investigate Hyers-Ulam-Rassias sta-
bility of a functional equation

f(x + ky) + f(x− ky)− k2f(x + y)− k2f(x− y)

+ 2(k2 − 1)f(x) + (k2 + k3)f(y) + (k2 − k3)f(−y)− 2f(ky) = 0.

1. Introduction

Let V and W be real normed spaces, Y a real Banach space, and k a
fixed real number with |k| 6= 1. In this paper, the following abbreviations
are used for a given mapping f : V → W :

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2!f(y),

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 3!f(y),

Q′f(x, y) :=f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)

− 4!f(y),

Dkf(x, y) :=f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y)

+2(k2 − 1)f(x) + (k2 + k3)f(y) + (k2 − k3)f(−y)− 2f(ky)
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for all x, y ∈ V . All solutions of the functional equations Qf(x, y) = 0,
Cf(x, y) = 0, and Q′f(x, y) = 0 are called a quadratic mapping, a cu-
bic mapping, and a quartic mapping, respectively. If a mapping can be
represented by the sum of a quadratic mapping, a cubic mapping and
a quartic mapping, we call the mapping a quadratic-cubic-quartic map-
ping. When each solution of a functional equation is a quadratic-cubic-
quartic mapping and all quadratic-cubic-quartic mapping is a solution
of that equation, the functional equation is called a quadratic-cubic-
quartic functional equation. Gordji et al. [4] investigated the stability
of the quadratic-cubic-quartic functional equation

f(x+ ny) + f(x− ny)− n2f(x+ y)− n2f(x− y)

− 2(1− n2)f(x)− n2(n2 − 1)

6
(f(2y) + 2f(−y)− 6f(y)) = 0

in non-Archimedean normed spaces, when n is a fixed integer.
In 1940, Ulam [6] questioned the stability of group homomorphisms,

and in 1941 Hyers [3] showed the stability of the Cauchy additive func-
tional equation as a partial answer to that question. In 1978, Rassias [5]
made Hyers’ result generalized and Găvruta [2] more generalized Rassias’
result. The concept of stability shown by Rassias is called ‘Hyers-Ulam-
Rassias stability’.

In this paper, we will show that the functional equation Drf(x, y) = 0
is a quadratic-cubic-quartic functional equation when r is a rational
number. And also we prove the Hyers-Ulam-Rassias stability of the
functional equation Dkf(x, y) = 0 when k is a real number.

2. Main results

The following theorem is a special case of Baker’s theorem [1].

Theorem 2.1. (Theorem 1 in [1]) Suppose that V and W are vector
spaces over Q, R or C and α0, β0, . . . , αm, βm are scalar such that αjβl−
αlβj 6= 0 whenever 0 ≤ j < l ≤ m. If fl : V → W for 0 ≤ l ≤ m and

m∑
l=0

fl(αlx+ βly) = 0

for all x, y ∈ V , then each fl is a generalized polynomial mapping of
degree at most m− 1.
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Baker [1] stated that if f is a generalized polynomial mapping of
degree at most m − 1, then f is expressed as f(x) = x0 +

∑m−1
l=1 a∗l (x)

for x ∈ V , where a∗l is a monomial mapping of degree l and a∗l has a
property a∗l (rx) = rla∗l (x) for x ∈ V and r ∈ Q.

Suppose that g, f ′, h are generalized polynomial mappings of degree
at most 4 and r is a rational number such that r 6= 0,±1. Baker [1]
also stated that if the equalities g(rx) = r2g(x), f ′(rx) = r3f ′(x) and
h(rx) = r4h(x) hold for all x ∈ V , then g, f ′ and h are a quadratic
mapping, a cubic mapping and a quartic mapping, respectively.

Now we will show that the functional equation Drf(x, y) = 0 is a
quadratic-cubic-quartic functional equation when r is a rational number
such that r 6= 0,±1.

The following abbreviations are used in this section for convenience.

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

∆f(x) :=
1

k4 − k2
[−Dkfe((k + 2)x, x)−Dkfe((k − 2)x, x)

− 4Dkfe((k + 1)x, x)− 4Dkfe((k − 1)x, x) + 10Dkfe(kx, x)

+Dkfe(2x, 2x) + 4Dkfe(x, 2x)− k2Dkfe(3x, x)

− 2(k2 + 1)Dkfe(2x, x) + (17k2 − 8)Dkfe(x, x)]

+
(17k2 + 10)Dkf(0, 0)

2k2(k2 − 1)

for all x, y ∈ V .

Theorem 2.2. Let r be a rational number such that r 6= 0,±1. A
mapping f satisfies the functional equation Drf(x, y) = 0 for all x, y ∈ V
if and only if f is a quadratic-cubic-quartic mapping.

Proof. Assume that the mapping f : V → W satisfies the functional
equation Drf(x, y) = 0 for all x, y ∈ V , and g, h are the mappings de-

fined as g(x) = −fe(2x)+16fe(x)
12

and h(x) = fe(2x)−4fe(x)
12

. Then the equal-

ities f(0) = Drf(0,0)
2(r2−1) = 0, ∆f(x) = 0, Drfo(x, y) = 0, Drg(x, y) = 0

and Drh(x, y) = 0 hold for all x, y ∈ V , and fo, g and h are general-
ized polynomial mappings of degree at most 4 by Theorem 2.1. We can
see that the mappings fo, g and h satisfy the properties g(2x) = 4g(x),
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h(2x) = 24h(x) and fo(rx)− r3fo(x) = 0 for all x ∈ V , since the equali-
ties

fe(4x)− 20fe(2x) + 64fe(x) = ∆f(x),(1)

fo(rx)− r3fo(x) =
−Drf(0, x)

2

hold for all x ∈ V . Therefore, according to Baker’s comment before this
theorem, g, fo and h are a quadratic mapping, a cubic mapping and a
quartic mapping, respectively. From f = fo + g + h, f is a quadratic-
cubic-quartic mapping.

Conversely, assume that f is a quadratic-cubic-quartic mapping, i.e.,
there exist a quadratic mapping g, a cubic mapping f ′ and a quartic
mapping h such that f = f ′+ g+h. Notice that the equalities f ′(rx) =
r3f ′(x), f ′(x) = −f ′(−x), g(rx) = r2g(x), g(x) = g(−x), h(rx) =
r4h(x), and h(x) = h(−x) hold for all x ∈ V and r ∈ Q.

The equality Drg(x, y) = 0 is deduced from the equality

Drg(x, y) = Qg(x, ry)− r2Qg(x, y)

for all x, y ∈ V . In order to prove that Drf
′(x, y) = 0 and Drh(x, y) = 0

when r is a rational number, let us first see that Drf
′(x, y) = 0 and

Dnh(x, y) = 0 when n is a natural number. Using mathematical induc-
tion, the equalities Drf

′(x, y) = 0 and Dnh(x, y) = 0 are obtained from
the equalities

D1f
′(x, y) = 0, D1h(x, y) = 0,

D2f
′(x, y) = Cf ′(x, y)− Cf ′(x− y, y), D2h(x, y) = Q′h(x, y),

Dnf
′(x, y) = Dn−1f

′(x+ y, y) +Dn−1f
′(x− y, y)−Dn−2f

′(x, y)

+ (n− 1)2D2f
′(x, y),

Dnh(x, y) = Dn−1h(x+ y, y) +Dn−1h(x− y, y)−Dn−2h(x, y)

+ (n− 1)2D2h(x, y)

for all x, y ∈ V and all n ∈ N. Let us now see that Drf
′(x, y) = 0 and

Drh(x, y) = 0 hold when r is a rational number such that r 6= 0,±1.
Notice that if r ∈ Q\{0}, then there exist m,n ∈ N such that r = n

m

or r = −n
m

. Since the equalities D n
m
f ′(x, y) = 0, D−n

m
f ′(x, y) = 0,
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D n
m
h(x, y) = 0 and D−n

m
h(x, y) = 0 are deduced from the equalities

D n
m
f ′(x, y) =Dnf

′
(
x,
y

m

)
− n2

m2
Dmf

′
(
x,
y

m

)
,

D−n
m
f ′(x, y) =D n

m
f ′(x, y),

D n
m
h(x, y) =Dnh

(
x,
y

m

)
− n2

m2
Dmh

(
x,
y

m

)
,

D−n
m
h(x, y) =D n

m
h(x, y)

for all x, y ∈ V and n,m ∈ N, we conclude that Drf
′(x, y) = 0 and

Drh(x, y) = 0 hold for all x, y ∈ V .

For a given mapping f : V → W and a real number p 6= 2, 3, 4, let
Jnf : V → W be the mappings defined as Jnf(x) :=

k3nfo(k
−nx) + 42n+1−4n

3
fe(2

−nx)− 42n+2−4n+2

3
fe(2

−n−1x) if p > 4,

k3nfo(k
−nx)− 4n−1

3

(
fe(2

−n+1x)− 16fe(2
−nx)

)
+fe(2n+1x)−4fe(2nx)

12·16n if 3 < p < 4,
fo(knx)
k3n

+ 16fe(2nx)−fe(2n+1x)
12·4n + fe(2n+1x)−4fe(2nx)

12·16n if 2 < p < 3,
fo(knx)
k3n

+ 16fe(2nx)−fe(2n+1x)
12·4n + fe(2n+1x)−4fe(2nx)

12·16n if p < 2

for all x ∈ V and all nonnegative integers n when 1 < |k|, and Jnf(x) :=

fo(knx)
k3n

+ 42n+1−4n
3

fe(2
−nx)− 42n+2−4n+2

3
fe(2

−n−1x) if p > 4,
fo(knx)
k3n

− 4n−1

3

(
fe(2

−n+1x)− 16fe(2
−nx)

)
+fe(2n+1x)−4fe(2nx)

12·16n if 3 < p < 4,

k3nfo(k
−nx) + 16fe(2nx)−fe(2n+1x)

12·4n + fe(2n+1x)−4fe(2nx)
12·16n if 2 < p < 3,

k3nfo(k
−nx) + 16fe(2nx)−fe(2n+1x)

12·4n + fe(2n+1x)−4fe(2nx)
12·16n if p < 2

for all x ∈ V and all nonnegative integers n when 0 < |k| < 1. By the
definition of Jnf and (1), we can calculate that Jnf(x)− Jn+1f(x) =

−k3n
2
Dkf(0, x

kn+1 ) + 4n(4n+1−1)
3

∆f
(

x
2n+2

)
if p > 4,

−k3n
2
Dkf(0, x

kn+1 )− 1
192·16n ∆f

(
2nx
)
− 4n−1

3
∆f
(

x
2n+1x

)
if 3 < p < 4,

Dkf(0,k
nx)

2k3n+3 + 4n+1−1
3·42n+3 ∆f

(
2nx
)

if 2 < p < 3,
Dkf(0,k

nx)
2k3n+3 + 4n+1−1

3·42n+3 ∆f
(
2nx
)

if p < 2

(2)
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for all x ∈ V and all nonnegative integers n when 1 < |k|, and Jnf(x)−
Jn+1f(x) =

Dkf(0,k
nx)

2k3n+3 + 4n(4n+1−1)
3

∆f
(
2−n−2x

)
if p > 4,

Dkf(0,k
nx)

2k3n+3 − 1
192·16n ∆f

(
2nx
)
− 4n−1

3
∆f
(
2−n−1x

)
if 3 < p < 4,

−k3n
2
Dkf(0, x

kn+1 ) + 4n+1−1
3·42n+3 ∆f

(
2nx
)

if 2 < p < 3,
−k3n
2
Dkf(0, x

kn+1 ) + 4n+1−1
3·42n+3 ∆f

(
2nx
)

if p < 2

(3)

for all x ∈ V and all nonnegative integers n when 0 < |k| < 1. Therefore,
together with the equality f(x)−Jnf(x) =

∑n−1
i=0 (Jif(x)−Ji+1f(x)) for

all x ∈ V , we obtain the following lemma.

Lemma 2.3. If f : V → W is a mapping such that

Dkf(x, y) = 0

for all x, y ∈ V , then

Jnf(x) = f(x)

for all x ∈ V and all positive integers n.

From Lemma 2.3, we can prove the following stability theorem.

Theorem 2.4. Let X be a real normed space, Y a real Banach space,
and p a positive real number with p 6= 2, 3, 4. Suppose that f : X → Y
is a mapping such that

‖Dkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(4)

for all x, y ∈ X. Then there exists a unique solution mapping F of the
functional equation DkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤



θ‖x‖p
2||k|3−|k|p| + Kθ‖x‖p

3·2p
(

4
2p−16 −

1
2p−4

)
if p > 4,

θ‖x‖p
2||k|3−|k|p| + Kθ‖x‖p

12

(
1

16−2p + 1
2p−4

)
if 3 < p < 4,

θ‖x‖p
2||k|3−|k|p| + Kθ‖x‖p

12

(
1

16−2p + 1
4−2p

)
if 2 < p < 3,

θ‖x‖p
2||k|3−|k|p| + Kθ‖x‖p

12

(
1

16−2p + 1
4−2p

)
if 0 < p < 2

(5)
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for all x ∈ X, where

K =
37k2 + 42 + (2k2 + 8)2p + k23p + 10|k|p + 4|k − 1|p

|k4 − k2|

+
4|k + 1|p + |k − 2|p + |k + 2|p

|k4 − k2|
.

Proof. We prove this theorem by dividing it into two cases, |k| < 1
and 1 < |k|.

Let us first prove the case of 1 < |k|. From the definition of ∆f and
(3), we have

‖∆f(x)‖ =

∥∥∥∥ 1

k4 − k2
[−Dkfe((k + 2)x, x)−Dkfe((k − 2)x, x)

− 4Dkfe((k + 1)x, x)− 4Dkfe((k − 1)x, x) + 10Dkfe(kx, x)

+Dkfe(2x, 2x) + 4Dkfe(x, 2x)− k2Dkfe(3x, x)

− 2(k2 + 1)Dkfe(2x, x) + (17k2 − 8)Dkfe(x, x)]

+
(17k2 + 10)Dkf(0, 0)

2k2(k2 − 1)

∥∥∥∥
≤K‖x‖p(6)

for all x ∈ X. It follows from (2) and (4) that ‖Jnf(x)− Jn+1f(x)‖ ≤

(
|k|3n

2·|k|(n+1)p + 4n(4n+1−1)K
3·2(n+2)p

)
θ‖x‖p if p > 4,(

|k|3n
2·|k|(n+1)p + 2npK

12·16n+1 + 4n−1K
3·2(n+1)p

)
θ‖x‖p if 3 < p < 4,(

|k|np

2·|k|3n+3 + 2npK
12·16n+1 + 4n−1K

3·2(n+1)p

)
θ‖x‖p if 2 < p < 3,(

|k|np

2·|k|3n+3 + (4n+1−1)2npK
3·42n+1

)
θ‖x‖p if 0 < p < 2

for all x ∈ X. Together with the equality Jnf(x)−Jn+mf(x) =
∑n+m−1

i=n (Jif(x)−
Ji+1f(x)) for all x ∈ X, we get ‖Jnf(x)− Jn+mf(x)‖ ≤

n+m−1∑
i=n



( |k|3i
2·|k|(i+1)p + 4i(4i+1−1)K

3·2(i+2)p

)
θ‖x‖p if p > 4,( |k|3i

2·|k|(i+1)p + 2ipK
12·16i+1 + 4i−1K

3·2(i+1)p

)
θ‖x‖p if 3 < p < 4,( |k|ip

2·|k|3i+3 + 2ipK
12·16i+1 + 4i−1K

3·2(i+1)p

)
θ‖x‖p if 2 < p < 3,( |k|ip

2·|k|3i+3 + (4i+1−1)2ipK
3·42i+1

)
θ‖x‖p if 0 < p < 2

(7)
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for all x ∈ X and n,m ∈ N ∪ {0}. It follows from (7) that the sequence
{Jnf(x)} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {Jnf(x)} converges for all x ∈ X. Hence we can define a
mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n → ∞ in
(7) we get the inequality (5). For the case 2 < p < 3, from the definition
of F , we easily get

‖DkF (x, y)‖ = lim
n→∞

∥∥∥ 1

2 · k3n
(Dkf (knx, kny)−Dkf (−knx,−kny))

+
4n

12

(
−Dkfe

(
2x

2n
,
2y

2n

)
+ 16Dkfe

( x
2n
,
y

2n

))
+
Dkfe (2n+1x, 2n+1y)− 4Dkfe (2nx, 2ny)

12 · 16n

∥∥∥
≤ lim

n→∞

(
knp

k3n
+

4n(2p + 16)

12 · 2np
+

2np(2p + 4)

12 · 16n

)
θ(‖x‖p + ‖y‖p)

=0

for all x, y ∈ X. Also we easily show that DkF (x, y) = 0 by the similar
method for the other cases, either 0 < p < 2 or 3 < p < 4 or 4 < p.

To prove the uniqueness of F , let F ′ : X → Y be another solution
mapping satisfying (5). Instead of the condition (5), it is sufficient to
show that there is a unique mapping that satisfies condition ‖f(x) −
F (x)‖ ≤ θ‖x‖p

2||k|3−|k|p| +
Kθ‖x‖p

12

(
1

|16−2p| +
1

|4−2p|

)
simply. Notice that ‖f(x)−

F (x)‖ = ‖fe(x)− Fe(x)‖ = ‖fo(x)− Fo(x)‖ and F ′(x) = JnF
′(x) for all

n ∈ N by Lemma 2.3.
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For the case 3 < p < 4, we have

‖Jnf(x)− F ′(x)‖
=‖Jnf(x)− JnF ′(x)‖

=

∥∥∥∥k3nfo(k−nx)− 4n−1

3

(
fe(2

−n+1x)− 16fe(2
−nx)

)
+
fe(2

n+1x)− 4fe(2
nx)

12 · 16n
− k3nF ′o(k−nx)

+
4n−1

3

(
F ′e(2

−n+1x)− 16F ′e(2
−nx)

)
− F ′e(2

n+1x)− 4F ′e(2
nx)

12 · 16n

∥∥∥∥
≤|k|3n‖(fo − F ′o)(k−nx)‖+

‖(fe − F ′e)(2nx)‖
3 · 16n

+
‖(fe − F ′e)(2n+1x)‖

12 · 16n

+
4n−1

3
‖(fe − F ′e)(2−n+1x)‖+

4n+1

3
‖(fe − F ′e)(2−nx)

∥∥
≤
(
|k|3n

|k|np
+

2np

3 · 16n
+

4 · 2(n+1)p

3 · 16n+1
+

4n−1

3 · 2(n−1)p +
4n+1

3 · 2np

)
×(

1

2||k|3 − |k|p|
+

K

12|16− 2p|
+

K

12|4− 2p|

)
θ‖x‖p

for all x ∈ X and all positive integers n. Taking the limit in the above
inequality as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for
all x ∈ X. For the other cases, either 0 < p < 2 or 2 < p < 3 or 4 < p,
we also easily show that F ′(x) = limn→∞ Jnf(x) by the similar method.
This means that F (x) = F ′(x) for all x ∈ X.

Now consider the case of |k| < 1, which has not yet been proven. From
(3), (4), (6) and the definition of Jnf , we have ‖Jnf(x)− Jn+mf(x)‖ ≤

n+m−1∑
i=n



( |k|ip
2·|k|3(i+1) + 4i(4i+1−1)

3·2(i+2)p K
)
θ‖x‖p if p > 4,( |k|ip

2·|k|3(i+1) + 2ipK
12·16i+1 + 4i−1K

3·2(i+1)p

)
θ‖x‖p if 3 < p < 4,( |k|3i

2·|k|(i+1)p + (4i+1−1)2ip
3·42i+1 K

)
θ‖x‖p if 2 < p < 3,( |k|3i

2·|k|(i+1)p + (4i+1−1)2ip
3·42i+1 K

)
θ‖x‖p if 0 < p < 2

for all x ∈ X and n,m ∈ N∪{0}. The remainder of the proof in the case
of 0 < |k| < 1, derived from the above inequality, is omitted because it
proceeds very similar to the case of 1 < |k|.



168 Yang-Hi Lee

References

[1] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci.
133 (6) (2005), 1657–1664.
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