# HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC-CUBIC-QUARTIC FUNCTIONAL EQUATION 

Yang-Hi Lee

Abstract. In this paper, we investigate Hyers-Ulam-Rassias stability of a functional equation

$$
\begin{aligned}
& f(x+k y)+f(x-k y)-k^{2} f(x+y)-k^{2} f(x-y) \\
& \quad+2\left(k^{2}-1\right) f(x)+\left(k^{2}+k^{3}\right) f(y)+\left(k^{2}-k^{3}\right) f(-y)-2 f(k y)=0 .
\end{aligned}
$$

## 1. Introduction

Let $V$ and $W$ be real normed spaces, $Y$ a real Banach space, and $k$ a fixed real number with $|k| \neq 1$. In this paper, the following abbreviations are used for a given mapping $f: V \rightarrow W$ :

$$
\begin{aligned}
Q f(x, y):= & f(x+y)+f(x-y)-2 f(x)-2!f(y), \\
C f(x, y): & =f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-3!f(y), \\
Q^{\prime} f(x, y): & =f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y) \\
& -4!f(y), \\
D_{k} f(x, y):= & f(x+k y)+f(x-k y)-k^{2} f(x+y)-k^{2} f(x-y) \\
& +2\left(k^{2}-1\right) f(x)+\left(k^{2}+k^{3}\right) f(y)+\left(k^{2}-k^{3}\right) f(-y)-2 f(k y)
\end{aligned}
$$

Received April 10, 2019. Revised March 4, 2020. Accepted March 9, 2020.
2010 Mathematics Subject Classification: 39B82, 39B52.
Key words and phrases: stability of a functional equation, quadratic-cubic-quartic functional equation, quadratic-cubic-quartic mapping.
(c) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
for all $x, y \in V$. All solutions of the functional equations $Q f(x, y)=0$, $C f(x, y)=0$, and $Q^{\prime} f(x, y)=0$ are called a quadratic mapping, a cubic mapping, and a quartic mapping, respectively. If a mapping can be represented by the sum of a quadratic mapping, a cubic mapping and a quartic mapping, we call the mapping a quadratic-cubic-quartic mapping. When each solution of a functional equation is a quadratic-cubicquartic mapping and all quadratic-cubic-quartic mapping is a solution of that equation, the functional equation is called a quadratic-cubicquartic functional equation. Gordji et al. [4] investigated the stability of the quadratic-cubic-quartic functional equation

$$
\begin{aligned}
f(x+n y) & +f(x-n y)-n^{2} f(x+y)-n^{2} f(x-y) \\
& -2\left(1-n^{2}\right) f(x)-\frac{n^{2}\left(n^{2}-1\right)}{6}(f(2 y)+2 f(-y)-6 f(y))=0
\end{aligned}
$$

in non-Archimedean normed spaces, when $n$ is a fixed integer.
In 1940, Ulam [6] questioned the stability of group homomorphisms, and in 1941 Hyers [3] showed the stability of the Cauchy additive functional equation as a partial answer to that question. In 1978, Rassias [5] made Hyers' result generalized and Găvruta [2] more generalized Rassias' result. The concept of stability shown by Rassias is called 'Hyers-UlamRassias stability'.

In this paper, we will show that the functional equation $D_{r} f(x, y)=0$ is a quadratic-cubic-quartic functional equation when $r$ is a rational number. And also we prove the Hyers-Ulam-Rassias stability of the functional equation $D_{k} f(x, y)=0$ when $k$ is a real number.

## 2. Main results

The following theorem is a special case of Baker's theorem [1].
Theorem 2.1. (Theorem 1 in [1]) Suppose that $V$ and $W$ are vector spaces over $\mathbb{Q}, \mathbb{R}$ or $\mathbb{C}$ and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}$ $\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow W$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each $f_{l}$ is a generalized polynomial mapping of degree at most $m-1$.

Baker [1] stated that if $f$ is a generalized polynomial mapping of degree at most $m-1$, then $f$ is expressed as $f(x)=x_{0}+\sum_{l=1}^{m-1} a_{l}^{*}(x)$ for $x \in V$, where $a_{l}^{*}$ is a monomial mapping of degree $l$ and $a_{l}^{*}$ has a property $a_{l}^{*}(r x)=r^{l} a_{l}^{*}(x)$ for $x \in V$ and $r \in \mathbb{Q}$.

Suppose that $g, f^{\prime}, h$ are generalized polynomial mappings of degree at most 4 and $r$ is a rational number such that $r \neq 0, \pm 1$. Baker [1] also stated that if the equalities $g(r x)=r^{2} g(x), f^{\prime}(r x)=r^{3} f^{\prime}(x)$ and $h(r x)=r^{4} h(x)$ hold for all $x \in V$, then $\mathrm{g}, f^{\prime}$ and $h$ are a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

Now we will show that the functional equation $D_{r} f(x, y)=0$ is a quadratic-cubic-quartic functional equation when $r$ is a rational number such that $r \neq 0, \pm 1$.

The following abbreviations are used in this section for convenience.

$$
\begin{aligned}
f_{o}(x):= & \frac{f(x)-f(-x)}{2}, \quad f_{e}(x):=\frac{f(x)+f(-x)}{2}, \\
\Delta f(x):= & \frac{1}{k^{4}-k^{2}}\left[-D_{k} f_{e}((k+2) x, x)-D_{k} f_{e}((k-2) x, x)\right. \\
& -4 D_{k} f_{e}((k+1) x, x)-4 D_{k} f_{e}((k-1) x, x)+10 D_{k} f_{e}(k x, x) \\
& +D_{k} f_{e}(2 x, 2 x)+4 D_{k} f_{e}(x, 2 x)-k^{2} D_{k} f_{e}(3 x, x) \\
& \left.-2\left(k^{2}+1\right) D_{k} f_{e}(2 x, x)+\left(17 k^{2}-8\right) D_{k} f_{e}(x, x)\right] \\
& +\frac{\left(17 k^{2}+10\right) D_{k} f(0,0)}{2 k^{2}\left(k^{2}-1\right)}
\end{aligned}
$$

for all $x, y \in V$.
Theorem 2.2. Let $r$ be a rational number such that $r \neq 0, \pm 1$. $A$ mapping $f$ satisfies the functional equation $D_{r} f(x, y)=0$ for all $x, y \in V$ if and only if $f$ is a quadratic-cubic-quartic mapping.

Proof. Assume that the mapping $f: V \rightarrow W$ satisfies the functional equation $D_{r} f(x, y)=0$ for all $x, y \in V$, and $g, h$ are the mappings defined as $g(x)=\frac{-f_{e}(2 x)+16 f_{e}(x)}{12}$ and $h(x)=\frac{f_{e}(2 x)-4 f_{e}(x)}{12}$. Then the equalities $f(0)=\frac{D_{r} f(0,0)}{2\left(r^{2}-1\right)}=0, \Delta f(x)=0, D_{r} f_{o}(x, y)=0, D_{r} g(x, y)=0$ and $D_{r} h(x, y)=0$ hold for all $x, y \in V$, and $f_{o}, g$ and $h$ are generalized polynomial mappings of degree at most 4 by Theorem 2.1. We can see that the mappings $f_{o}, g$ and $h$ satisfy the properties $g(2 x)=4 g(x)$,
$h(2 x)=2^{4} h(x)$ and $f_{o}(r x)-r^{3} f_{o}(x)=0$ for all $x \in V$, since the equalities

$$
\begin{array}{r}
f_{e}(4 x)-20 f_{e}(2 x)+64 f_{e}(x)=\Delta f(x),  \tag{1}\\
f_{o}(r x)-r^{3} f_{o}(x)=\frac{-D_{r} f(0, x)}{2}
\end{array}
$$

hold for all $x \in V$. Therefore, according to Baker's comment before this theorem, $g, f_{o}$ and $h$ are a quadratic mapping, a cubic mapping and a quartic mapping, respectively. From $f=f_{o}+g+h, f$ is a quadratic-cubic-quartic mapping.

Conversely, assume that $f$ is a quadratic-cubic-quartic mapping, i.e., there exist a quadratic mapping $g$, a cubic mapping $f^{\prime}$ and a quartic mapping $h$ such that $f=f^{\prime}+g+h$. Notice that the equalities $f^{\prime}(r x)=$ $r^{3} f^{\prime}(x), f^{\prime}(x)=-f^{\prime}(-x), g(r x)=r^{2} g(x), g(x)=g(-x), h(r x)=$ $r^{4} h(x)$, and $h(x)=h(-x)$ hold for all $x \in V$ and $r \in \mathbb{Q}$.

The equality $D_{r} g(x, y)=0$ is deduced from the equality

$$
D_{r} g(x, y)=Q g(x, r y)-r^{2} Q g(x, y)
$$

for all $x, y \in V$. In order to prove that $D_{r} f^{\prime}(x, y)=0$ and $D_{r} h(x, y)=0$ when $r$ is a rational number, let us first see that $D_{r} f^{\prime}(x, y)=0$ and $D_{n} h(x, y)=0$ when $n$ is a natural number. Using mathematical induction, the equalities $D_{r} f^{\prime}(x, y)=0$ and $D_{n} h(x, y)=0$ are obtained from the equalities

$$
\begin{aligned}
& D_{1} f^{\prime}(x, y)=0, \quad D_{1} h(x, y)=0, \\
& D_{2} f^{\prime}(x, y)=C f^{\prime}(x, y)-C f^{\prime}(x-y, y), D_{2} h(x, y)=Q^{\prime} h(x, y) \\
& D_{n} f^{\prime}(x, y)=D_{n-1} f^{\prime}(x+y, y)+D_{n-1} f^{\prime}(x-y, y)-D_{n-2} f^{\prime}(x, y) \\
& +(n-1)^{2} D_{2} f^{\prime}(x, y), \\
& D_{n} h(x, y)=D_{n-1} h(x+y, y)+D_{n-1} h(x-y, y)-D_{n-2} h(x, y) \\
& +(n-1)^{2} D_{2} h(x, y)
\end{aligned}
$$

for all $x, y \in V$ and all $n \in \mathbb{N}$. Let us now see that $D_{r} f^{\prime}(x, y)=0$ and $D_{r} h(x, y)=0$ hold when $r$ is a rational number such that $r \neq 0, \pm 1$. Notice that if $r \in \mathbb{Q} \backslash\{0\}$, then there exist $m, n \in \mathbb{N}$ such that $r=\frac{n}{m}$ or $r=\frac{-n}{m}$. Since the equalities $D_{\frac{n}{m}} f^{\prime}(x, y)=0, D_{\frac{-n}{m}} f^{\prime}(x, y)=0$,
$D_{\frac{n}{m}} h(x, y)=0$ and $D_{\frac{-n}{m}} h(x, y)=0$ are deduced from the equalities

$$
\begin{aligned}
D_{\frac{n}{m}} f^{\prime}(x, y) & =D_{n} f^{\prime}\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} f^{\prime}\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}} f^{\prime}(x, y) & =D_{\frac{n}{m}} f^{\prime}(x, y), \\
D_{\frac{n}{m}} h(x, y) & =D_{n} h\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} h\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}}^{m} h(x, y) & =D_{\frac{n}{m}} h(x, y)
\end{aligned}
$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we conclude that $D_{r} f^{\prime}(x, y)=0$ and $D_{r} h(x, y)=0$ hold for all $x, y \in V$.

For a given mapping $f: V \rightarrow W$ and a real number $p \neq 2,3,4$, let $J_{n} f: V \rightarrow W$ be the mappings defined as $J_{n} f(x):=$

$$
\left\{\begin{array}{lr}
k^{3 n} f_{o}\left(k^{-n} x\right)+\frac{4^{2 n+1}-4^{n}}{3} f_{e}\left(2^{-n} x\right)-\frac{4^{2 n+2}-4^{n+2}}{3} f_{e}\left(2^{-n-1} x\right) & \text { if } p>4, \\
k^{3 n} f_{o}\left(k^{-n} x\right)-\frac{4^{n-1}}{3}\left(f_{e}\left(2^{-n+1} x\right)-16 f_{e}\left(2^{-n} x\right)\right) & \\
+\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 11^{n}} & \text { if } 3<p<4, \\
\frac{f_{o}\left(k^{n} x\right)}{k^{3 n}}+\frac{16 f_{e}\left(2^{n} x\right)-f_{e}\left(2^{n+1} x\right)}{12 \cdot 4}+\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 16^{n}} & \text { if } 2<p<3, \\
\frac{f_{o}\left(k^{n} x\right)}{k^{3 n}}+\frac{16 f_{e}\left(2^{n} x\right)-f_{e}\left(2^{n+1} x\right)}{12 \cdot 4^{n}}+\frac{\left.f_{e}\left(2^{n+1} x\right)-4 f_{e} 2^{n} x\right)}{12 \cdot 16^{n}} & \text { if } p<2
\end{array}\right.
$$

for all $x \in V$ and all nonnegative integers $n$ when $1<|k|$, and $J_{n} f(x):=$

$$
\begin{cases}\frac{f_{o}\left(k^{n} x\right)}{k^{3 n}}+\frac{4^{2 n+1}-4^{n}}{3} f_{e}\left(2^{-n} x\right)-\frac{4^{2 n+2}-4^{n+2}}{3} f_{e}\left(2^{-n-1} x\right) & \text { if } p>4, \\ \frac{f_{o}\left(k^{n} x\right)}{k^{3 n}}-\frac{4^{n-1}}{3}\left(f_{e}\left(2^{-n+1} x\right)-16 f_{e}\left(2^{-n} x\right)\right) & \text { if } \\ +\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 16^{n}} & 3<p<4, \\ k^{3 n} f_{o}\left(k^{-n} x\right)+\frac{16 f_{e}\left(2^{n} x\right)-f_{e}\left(2^{n+1} x\right)}{12 \cdot 4^{n}}+\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 16^{n}} & \text { if } \\ k^{3 n} f_{o}\left(k^{-n} x\right)+\frac{16 f_{e}\left(2^{n} x\right)-f_{e}\left(2^{n+1} x\right)}{12 \cdot 4^{n}}+\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 16^{n}} & \text { if } p<3,\end{cases}
$$

for all $x \in V$ and all nonnegative integers $n$ when $0<|k|<1$. By the definition of $J_{n} f$ and (1), we can calculate that $J_{n} f(x)-J_{n+1} f(x)=$

$$
\left\{\begin{array}{lr}
\frac{-k^{3 n}}{2} D_{k} f\left(0, \frac{x}{k^{x+1}}\right)+\frac{4^{n}\left(4^{n+1}-1\right)}{3} \Delta f\left(\frac{x}{2^{n+2}}\right) & \text { if } p>4,  \tag{2}\\
\frac{-k^{3 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)-\frac{1}{192 \cdot 16^{n}} \Delta f\left(2^{n} x\right)-\frac{4^{n-1}}{3} \Delta f\left(\frac{x}{2^{n+1}} x\right) \\
& \text { if } 3<p<4, \\
\frac{D_{k} f\left(0, k^{n} x\right)}{2 k^{3 n+3}}+\frac{4^{n+1}-1}{3 \cdot 4^{2 n+3}} \Delta f\left(2^{n} x\right) & \text { if } 2<p<3, \\
\frac{D_{k} f\left(0, k^{n} x\right)}{2 k^{3} n+3}+\frac{4^{n+1}-1}{3 \cdot 4^{2 n+3}} \Delta f\left(2^{n} x\right) & \text { if } p<2
\end{array}\right.
$$

for all $x \in V$ and all nonnegative integers $n$ when $1<|k|$, and $J_{n} f(x)-$ $J_{n+1} f(x)=$

$$
\left\{\begin{array}{lr}
\frac{D_{k} f\left(0, k^{n} x\right)}{2 k^{3 n+3}}+\frac{4^{n}\left(4^{n+1}-1\right)}{3} \Delta f\left(2^{-n-2} x\right) & \text { if } p>4  \tag{3}\\
\frac{D_{k} f\left(0, k^{n} x\right)}{2 k^{3 n+3}}-\frac{1}{192 \cdot 16^{n}} \Delta f\left(2^{n} x\right)-\frac{4^{n-1}}{3} \Delta f\left(2^{-n-1} x\right) \\
& \text { if } 3<p<4 \\
\frac{-k^{3 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)+\frac{4^{n+1}}{3 \cdot 4^{2 n+1}} \Delta f\left(2^{n} x\right) & \text { if } 2<p<3 \\
\frac{-k^{3 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)+\frac{4^{n+1}-1}{3 \cdot 4^{2 n+3}} \Delta f\left(2^{n} x\right) & \text { if } p<2
\end{array}\right.
$$

for all $x \in V$ and all nonnegative integers $n$ when $0<|k|<1$. Therefore, together with the equality $f(x)-J_{n} f(x)=\sum_{i=0}^{n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)$ for all $x \in V$, we obtain the following lemma.

Lemma 2.3. If $f: V \rightarrow W$ is a mapping such that

$$
D_{k} f(x, y)=0
$$

for all $x, y \in V$, then

$$
J_{n} f(x)=f(x)
$$

for all $x \in V$ and all positive integers $n$.

From Lemma 2.3, we can prove the following stability theorem.
Theorem 2.4. Let $X$ be a real normed space, $Y$ a real Banach space, and $p$ a positive real number with $p \neq 2,3,4$. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|D_{k} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{4}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique solution mapping $F$ of the functional equation $D_{k} F(x, y)=0$ such that

$$
\|f(x)-F(x)\| \leq\left\{\begin{array}{lll}
\frac{\theta\|x\|^{p}}{2 \|\left. k\right|^{3}-k| |^{p} \mid}+\frac{K \theta\|x\|^{p}}{3 \cdot 2^{p}}\left(\frac{4}{2^{p}-16}-\frac{1}{2^{p}-4}\right) & \text { if } \quad p>4,  \tag{5}\\
\frac{\theta \| x x^{p}}{2 \|\left. k\right|^{p}-|k|^{p} \mid}+\frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{16-2^{p}}+\frac{1}{2^{p}-4}\right) & \text { if } & 3<p<4, \\
\frac{\theta\|x\|^{p}}{2\left\|\left.k\left|\|^{p}-k\right|\right|^{p} \mid\right.}+\frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{16-2^{p}}+\frac{1}{4-2^{p}}\right) & \text { if } & 2<p<3, \\
\frac{\theta\|x\|^{p}}{2 \|\left. k\right|^{3}-|k|^{p} \mid}+\frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{16-2^{p}}+\frac{1}{4-2^{p}}\right) & \text { if } & 0<p<2
\end{array}\right.
$$

for all $x \in X$, where

$$
\begin{aligned}
K= & \frac{37 k^{2}+42+\left(2 k^{2}+8\right) 2^{p}+k^{2} 3^{p}+10|k|^{p}+4|k-1|^{p}}{\left|k^{4}-k^{2}\right|} \\
& +\frac{4|k+1|^{p}+|k-2|^{p}+|k+2|^{p}}{\left|k^{4}-k^{2}\right|} .
\end{aligned}
$$

Proof. We prove this theorem by dividing it into two cases, $|k|<1$ and $1<|k|$.

Let us first prove the case of $1<|k|$. From the definition of $\Delta f$ and (3), we have

$$
\begin{aligned}
\|\Delta f(x)\|= & \| \frac{1}{k^{4}-k^{2}}\left[-D_{k} f_{e}((k+2) x, x)-D_{k} f_{e}((k-2) x, x)\right. \\
& -4 D_{k} f_{e}((k+1) x, x)-4 D_{k} f_{e}((k-1) x, x)+10 D_{k} f_{e}(k x, x) \\
& +D_{k} f_{e}(2 x, 2 x)+4 D_{k} f_{e}(x, 2 x)-k^{2} D_{k} f_{e}(3 x, x) \\
& \left.-2\left(k^{2}+1\right) D_{k} f_{e}(2 x, x)+\left(17 k^{2}-8\right) D_{k} f_{e}(x, x)\right] \\
& +\frac{\left(17 k^{2}+10\right) D_{k} f(0,0)}{2 k^{2}\left(k^{2}-1\right)} \|
\end{aligned}
$$

(6) $\quad \leq K\|x\|^{p}$
for all $x \in X$. It follows from (2) and (4) that $\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq$

$$
\begin{cases}\left(\frac{|k|^{3 n}}{2 \cdot|k| \mid c_{n+1) p}}+\frac{4^{n}\left(4^{n+1}-1\right) K}{3 \cdot 2^{(n+2) p}}\right) \theta\|x\|^{p} & \text { if } p>4 \\ \left(\frac{\left.|k|\right|^{3 n}}{\left.2 \cdot|k|\right|^{n+1) p}}+\frac{2^{n p} K}{12 \cdot 16^{n+1}}+\frac{4^{n-1} K}{3 \cdot 2^{(n+1) p}}\right) \theta\|x\|^{p} & \text { if } 3<p<4 \\ \left(\frac{|k|^{n}}{\left.2 \cdot|k|\right|^{n+3}}+\frac{2^{n p} K}{12 \cdot 16^{n+1}}+\frac{4^{n-1} K}{3 \cdot 2^{(n+1) p}}\right) \theta\|x\|^{p} & \text { if } 2<p<3 \\ \left(\frac{|k|^{p}}{2 \cdot|k|^{n+3}}+\frac{\left(4^{n+1}-12^{n+3}\right.}{3 \cdot 4^{2 n+1}}\right) \theta\|x\|^{p} & \text { if } 0<p<2\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-\right.$ $\left.J_{i+1} f(x)\right)$ for all $x \in X$, we get $\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq$

$$
\sum_{i=n}^{n+m-1} \begin{cases}\left(\frac{|k|^{3 i}}{\left.2 \cdot|k|\right|^{i+1) p}}+\frac{4^{i}\left(4^{i+1}-1\right) K}{\left.3 \cdot 2^{\left(i^{(i+2) p}\right.}\right) \theta\|x\|^{p}}\right. & \text { if } p>4,  \tag{7}\\ \left(\frac{|k|^{i}}{\left.2 \cdot|k|\right|^{(i+1) p}}+\frac{2^{i p} K}{12 \cdot 16^{i+1}}+\frac{4^{i-1} K}{3 \cdot 2\left(2^{(i+1) p}\right)}\right) \theta\|x\|^{p} & \text { if } 3<p<4, \\ \left(\frac{|k|^{i p}}{2 \cdot|k|^{i+3}}+\frac{2^{i p} K}{12 \cdot 11^{i+1}}+\frac{4^{i-1} K}{3 \cdot 2^{(i+1) p}}\right) \theta\|x\|^{p} & \text { if } 2<p<3, \\ \left(\frac{|k|^{i p}}{\left.2 \cdot|k|\right|^{i+3}}+\frac{\left(4^{i+1}-1\right) 2^{i p} K}{3 \cdot 4^{2 i+1}}\right) \theta\|x\|^{p} & \text { if } 0<p<2\end{cases}
$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup\{0\}$. It follows from (7) that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in X$. Since $Y$ is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (7) we get the inequality (5). For the case $2<p<3$, from the definition of $F$, we easily get

$$
\begin{aligned}
&\left\|D_{k} F(x, y)\right\|= \lim _{n \rightarrow \infty} \| \\
& \frac{1}{2 \cdot k^{3 n}}\left(D_{k} f\left(k^{n} x, k^{n} y\right)-D_{k} f\left(-k^{n} x,-k^{n} y\right)\right) \\
&+\frac{4^{n}}{12}\left(-D_{k} f_{e}\left(\frac{2 x}{2^{n}}, \frac{2 y}{2^{n}}\right)+16 D_{k} f_{e}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right) \\
&+\frac{D_{k} f_{e}\left(2^{n+1} x, 2^{n+1} y\right)-4 D_{k} f_{e}\left(2^{n} x, 2^{n} y\right)}{12 \cdot 16^{n}} \| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{k^{n p}}{k^{3 n}}+\frac{4^{n}\left(2^{p}+16\right)}{12 \cdot 2^{n p}}+\frac{2^{n p}\left(2^{p}+4\right)}{12 \cdot 16^{n}}\right) \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
&=0
\end{aligned}
$$

for all $x, y \in X$. Also we easily show that $D_{k} F(x, y)=0$ by the similar method for the other cases, either $0<p<2$ or $3<p<4$ or $4<p$.

To prove the uniqueness of $F$, let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (5). Instead of the condition (5), it is sufficient to show that there is a unique mapping that satisfies condition $\| f(x)$ $F(x) \| \leq \frac{\theta\|x\|^{p}}{2 \|\left. k\right|^{3}-|k|^{p} \mid}+\frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{116-2^{p} \mid}+\frac{1}{\left|4-2^{p}\right|}\right)$ simply. Notice that $\| f(x)-$ $F(x)\|=\| f_{e}(x)-F_{e}(x)\|=\| f_{o}(x)-F_{o}(x) \|$ and $F^{\prime}(x)=J_{n} F^{\prime}(x)$ for all $n \in \mathbb{N}$ by Lemma 2.3.

For the case $3<p<4$, we have

$$
\begin{aligned}
\| & J_{n} f(x)-F^{\prime}(x) \| \\
= & \left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
= & \| k^{3 n} f_{o}\left(k^{-n} x\right)-\frac{4^{n-1}}{3}\left(f_{e}\left(2^{-n+1} x\right)-16 f_{e}\left(2^{-n} x\right)\right) \\
& +\frac{f_{e}\left(2^{n+1} x\right)-4 f_{e}\left(2^{n} x\right)}{12 \cdot 16^{n}}-k^{3 n} F_{o}^{\prime}\left(k^{-n} x\right) \\
& +\frac{4^{n-1}}{3}\left(F_{e}^{\prime}\left(2^{-n+1} x\right)-16 F_{e}^{\prime}\left(2^{-n} x\right)\right)-\frac{F_{e}^{\prime}\left(2^{n+1} x\right)-4 F_{e}^{\prime}\left(2^{n} x\right)}{12 \cdot 16^{n}} \| \\
\leq & |k|^{3 n}\left\|\left(f_{o}-F_{o}^{\prime}\right)\left(k^{-n} x\right)\right\|+\frac{\left\|\left(f_{e}-F_{e}^{\prime}\right)\left(2^{n} x\right)\right\|}{3 \cdot 16^{n}}+\frac{\left\|\left(f_{e}-F_{e}^{\prime}\right)\left(2^{n+1} x\right)\right\|}{12 \cdot 16^{n}} \\
& +\frac{4^{n-1}}{3}\left\|\left(f_{e}-F_{e}^{\prime}\right)\left(2^{-n+1} x\right)\right\|+\frac{4^{n+1}}{3}\left\|\left(f_{e}-F_{e}^{\prime}\right)\left(2^{-n} x\right)\right\| \\
\leq & \left(\frac{|k|^{3 n}}{|k|^{n p}}+\frac{2^{n p}}{3 \cdot 16^{n}}+\frac{4 \cdot 2^{(n+1) p}}{3 \cdot 16^{n+1}}+\frac{4^{n-1}}{3 \cdot 2^{(n-1) p}}+\frac{4^{n+1}}{3 \cdot 2^{n p}}\right) \times \\
& \left(\frac{1}{2 \||k|^{3}-|k|^{p} \mid}+\frac{K}{12 \mid 16-2^{p \mid}}+\frac{K}{12\left|4-2^{p}\right|}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integers $n$. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, either $0<p<2$ or $2<p<3$ or $4<p$, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.

Now consider the case of $|k|<1$, which has not yet been proven. From (3), (4), (6) and the definition of $J_{n} f$, we have $\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq$
for all $x \in X$ and $n, m \in \mathbb{N} \cup\{0\}$. The remainder of the proof in the case of $0<|k|<1$, derived from the above inequality, is omitted because it proceeds very similar to the case of $1<|k|$.

## References

[1] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133 (6) (2005), 1657-1664.
[2] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[4] M. E. Gordji, H. Khodaei, and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull. Series A 72 (3) (2010), 69-84.
[5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[6] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.

## Yang-Hi Lee

Department of Mathematics Education
Gongju National University of Education
Gongju 32553, Republic of Korea
E-mail: yanghi2@hanmail.net

