IRREDUCIBILITY OF HURWITZ POLYNOMIALS OVER THE RING OF INTEGERS

Dong Yeol Oh ${ }^{\dagger}$ and Ye Lim Seo

Abstract

Let \mathbb{Z} be the ring of integers and $\mathbb{Z}[X]$ (resp., $h(\mathbb{Z})$) be the ring of polynomials (resp., Hurwitz polynomials) over \mathbb{Z}. In this paper, we study the irreducibility of Hurwitz polynomials in $h(\mathbb{Z})$. We give a sufficient condition for Hurwitz polynomials in $h(\mathbb{Z})$ to be irreducible, and we then show that $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$. By using a relation between usual polynomials in $\mathbb{Z}[X]$ and Hurwitz polynomials in $h(\mathbb{Z})$, we give a necessary and sufficient condition for Hurwitz polynomials over \mathbb{Z} to be irreducible under additional conditions on the coefficients of Hurwitz polynomials.

1. Introduction

Let R be a commutative ring with identity, $R \llbracket X \rrbracket$ (resp., $R[X]$) the ring of formal power series (resp., polynomials) over R, and $H(R)$ the set of formal expressions of the form $\sum_{n=0}^{\infty} a_{n} X^{n}$, where $a_{n} \in R$ for all $n \geq 1$. We define an addition on $H(R)$ as usual and a multiplication, called $*$-product, on $H(R)$ as follows: for $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}, g(X)=$ $\sum_{n=0}^{\infty} b_{n} X^{n} \in H(R)$,

$$
f(X) * g(X)=\sum_{n=0}^{\infty} c_{n} X^{n}, c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

Received April 24, 2019. Revised May 3, 2019. Accepted May 14, 2019.
2010 Mathematics Subject Classification: 13A05, 13A15, 13F15, 13F20.
Key words and phrases: Hurwitz polynomial ring, irreducible Hurwitz polynomial, primitive polynomial, atomic.
\dagger This work was supported by Research Fund from Chosun University, 2016.
(c) The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$ for nonnegative integers $n \geq k$. It is shown in [3] that $H(R)$ is a commutative ring with identity under these two operations, i.e., $H(R)=(R \llbracket X \rrbracket,+, *)$. The ring $H(R)$ is called the ring of Hurwitz series over R. The ring $h(R)$ of Hurwitz polynomials over R is the subring of $H(R)$ consisting of formal expressions of the form $\sum_{k=0}^{n} a_{k} X^{k}$, i.e., $h(R)=(R[X],+, *)$. Keigher introduced the ring of Hurwitz series and studied its properties [3,4]. Since then, many works on the ring of Hurwitz series have been done ($[1,2,5-7]$).

It is known that $h(R)$ is an integral domain if and only if R is an integral domain with $\operatorname{char}(R)=0$ [1, Proposition 1.1], [3, Corollary 2.8]. For an integral domain R with $\operatorname{char}(R)=0$, it is shown that $h(R)$ satisfies the ascending chain condition on principal ideals (ACCP) if and only if R satisfies ACCP [5, Theorem 2.4]. So the ring $h(\mathbb{Z})$ of Hurwitz polynomials over \mathbb{Z} is an integral domain satisfying ACCP. Hence $h(\mathbb{Z})$ is atomic, that is, every nonzero nonunit element can be written as a finite product of irreducible elements.

In this paper, we investigate the irreducibility of Hurwitz polynomials in $h(\mathbb{Z})$. This paper consists of four sections including introduction. In Section 2, we give a sufficient condition for Hurwitz polynomials in $h(\mathbb{Z})$ to be irreducible. We then show that $h(\mathbb{Z})$ is not a UFD, thus $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$. For a nonzero element $f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in h(\mathbb{Z})$, where $a_{n} \neq 0, n$ is called the degree of $f(X)$ and write $\operatorname{deg}(f)=n$. In Section 3, we completely characterize the irreducible Hurwitz polynomials over \mathbb{Z} of degree 2, and give a necessary and sufficient condition for Hurwitz polynomials $f(X)$ over \mathbb{Z} of degree 3 under some additional conditions on the coefficients of $f(X)$. In Section 4 , we give a necessary and sufficient condition for Hurwitz polynomials $f(X)$ over \mathbb{Z} of degree $n \geq 4$ under some additional conditions on the coefficients of $f(X)$.

2. Irreducible Hurwitz Polynomials

Let R be a commutative ring with identity and $U(R)$ be the set of units of R. We start this section with the following simple observation without proof.

Lemma 2.1. Let D be an integral domain with $\operatorname{char}(D)=0$. Then $U(h(D))=U(D)$.

For a nonzero element $f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in h(\mathbb{Z})$, we say that $f(X)$ is primitive if $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=1$ (i.e., if d divides all a_{i}, then d is a unit). If a nonzero nonunit element of $h(Z)$ is not primitive, then it is reducible. Clearly every primitive Hurwitz polynomial in $h(Z)$ of degree one is irreducible.

Proposition 2.2. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in h(\mathbb{Z})$ be a primitive Hurwitz polynomial of $\operatorname{deg}(f)=n \geq 2$. If $\left|a_{n}\right|<n$, then $f(X)$ is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that $f(X)$ is reducible in $h(\mathbb{Z})$. Since $f(X)$ is primitive, there exist $g(X)=\sum_{j=0}^{s} b_{j} X^{j}, h(X)=\sum_{k=0}^{t} c_{k} X^{k} \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and $s+t=n$ such that $f(X)=g(X) * h(X)$. Hence

$$
a_{n}=\binom{s+t}{s} b_{s} c_{t}=\binom{n}{s} b_{s} c_{t} .
$$

Thus $\left|a_{n}\right| \geq n$, which is a contradiction.
The following is a sufficient condition for a Hurwitz polynomial over \mathbb{Z} of a prime power degree to be irreducible, which is an analog of Eisenstein's criterion which gives a sufficient condition for a polynomial in $\mathbb{Z}[X]$ to be irreducible.

Proposition 2.3. Let $n=p^{m}$, where p is a prime number and $m \geq 1$. Let $f(X)=\sum_{i=0}^{n} a_{n} X^{n} \in h(\mathbb{Z})$ be a primitive Hurwitz polynomial of degree n. If $p \nmid a_{n}$, then $f(X)$ is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that $f(X)$ is reducible in $h(\mathbb{Z})$. Since $f(X)$ is primitive, there exist $g(X)=\sum_{j=0}^{s} b_{j} X^{j}, h(X)=\sum_{k=0}^{t} c_{k} X^{k} \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and $s+t=n$ such that $f(X)=g(X) * h(X)$. Hence

$$
a_{n}=\binom{s+t}{s} b_{s} c_{m}=\binom{p^{m}}{s} b_{s} c_{m}
$$

Thus $p \mid a_{n}$, a contradiction.
Corollary 2.4. Let $f(X)=\sum_{i=0}^{p} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of prime degree p. If $p \nmid a_{p}$, then $f(X)$ is irreducible in $h(\mathbb{Z})$.

Remark 2.5. It is known that if R is an integral domain containing the field \mathbb{Q} of rational numbers, then $h(R) \cong R[X]$ [4, Proposition 2.4]. In general, when R is an integral domain not containing \mathbb{Q}, we do not
know whether $h(R)$ is isomorphic to $R[X]$. Since $h(\mathbb{Z})$ satisfies ACCP [5, Theorem 2.4], $h(\mathbb{Z})$ is atomic. Clearly, 2 and X are irreducible in $h(\mathbb{Z})$. Note that X^{2} is irreducible in $h(\mathbb{Z})$ by Proposition 2.2. Since $2 * X^{2}=X * X, h(\mathbb{Z})$ is not a UFD. Hence $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$.

3. Irreducible Hurwitz Polynomials of degree ≤ 3

It is well known that a primitive polynomial over \mathbb{Z} is irreducible over \mathbb{Z} if and only if it is irreducible over \mathbb{Q}, which is called Gauss Lemma. Hence a necessary and sufficient condition for a polynomial $f(X)$ over \mathbb{Z} of degree 2 or 3 to be irreducible is that $f(X)$ has no rational zeros. Thus it is easy to determine whether a polynomial over \mathbb{Z} of degree ≤ 3 is irreducible or not. In this section, we give a necessary and sufficient condition for Hurwitz polynomials over \mathbb{Z} of degree ≤ 3 to be irreducible by using the irreducibility of polynomials in $\mathbb{Z}[X]$.

We note that every primitive polynomial of degree one in $Z[X]$ (resp., $h(Z))$ is irreducible. We start this section with Hurwitz polynomials over \mathbb{Z} of degree 2. Let $f(X)=a_{2} x^{2}+a_{1} X+a_{0} \in h(\mathbb{Z})$, where $a_{2} \neq 0$. By Corollary 2.4, we only consider the case when a_{2} is even.

Theorem 3.1. Let $f(X)=\sum_{i=0}^{2} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 2 with $2 \mid a_{2}$. Then the following are equivalent.

1. $f(X)=a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $h(\mathbb{Z})$.
2. $g(X)=\frac{1}{2} a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $\mathbb{Z}[X]$.

Proof. Note that

$$
\begin{aligned}
\left(b_{1} X+b_{0}\right) *\left(c_{1} X+c_{0}\right) & =\binom{2}{1} b_{1} c_{1} X^{2}+\left(\binom{1}{1} b_{1} c_{0}+\binom{1}{0} b_{0} c_{1}\right) X+b_{0} c_{0} \\
& =2 b_{1} c_{1} X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0} .
\end{aligned}
$$

Since $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}\right)=1, f(X)$ and $g(X)$ are both primitive. Thus if $f(X)$ (resp., $g(X)$) is reducible in $h(\mathbb{Z})$ (resp., $\mathbb{Z}[X]$), then $f(X)$ (resp., $g(X)$) is a $*$-product (resp., usual product) of two polynomials of degree one. Hence $f(X)=\left(b_{1} X+b_{0}\right) *\left(c_{1} X+c_{0}\right)$ in $h(\mathbb{Z})$ if and only if $g(X)=\left(b_{1} X+b_{0}\right)\left(c_{1} X+c_{0}\right)$ in $\mathbb{Z}[X]$. Therefore $f(X)$ is irreducible in $h(\mathbb{Z})$ if and only if $g(X)$ is irreducible in $\mathbb{Z}[X]$.

Remark 3.2. The condition $\operatorname{gcd}\left(a_{2}, a_{1}, a_{0}\right)=1$ in Theorem 3.1 is necessary since $X^{2}+2 X+4 \in \mathbb{Z}[X]$ is irreducible, but $2 X^{2}+2 X+4=$ $2 *\left(X^{2}+X+2\right) \in h(\mathbb{Z})$ is reducible.

For a primitive Hurwitz polynomial $f(X)=\sum_{i=0}^{3} a_{i} X^{i} \in h(\mathbb{Z})$ of degree 3 , we only consider the case when $3 \mid a_{3}$ by Corollary 2.4. We first give a sufficient condition for a primitive Hurwitz polynomial $f(X)=$ $\sum_{i=0}^{3} a_{i} X^{i} \in h(\mathbb{Z})$ of degree 3 with $3 \mid a_{3}$ to be irreducible.

Proposition 3.3. Let $f(X)=\sum_{i=0}^{3} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_{3}$. If $g(X)=\frac{1}{3} a_{3} X^{3}+a_{2} X^{2}+$ $2 a_{1} X+2 a_{0}$ is irreducible in $\mathbb{Z}[X]$, then $f(X)$ is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that $f(X)$ is reducible in $h(\mathbb{Z})$. Then $f(X)=h(X) *$ $k(X)$, where $h(X)$ and $k(X)$ are Hurwitz polynomials over \mathbb{Z} of degree one and two, respectively. Write $h(X)=b_{1} X+b_{0}$ and $k(X)=c_{2} X^{2}+$ $c_{1} X+c_{0}$. So we obtain

$$
\begin{aligned}
f(X) & =\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+c_{1} X+c_{0}\right) \\
& =3 b_{1} c_{2} X^{3}+\left(2 b_{1} c_{1}+b_{0} c_{2}\right) X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0} \\
& =a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0} .
\end{aligned}
$$

Hence, $\frac{1}{3} a_{3}=b_{1} c_{2}, a_{2}=2 b_{1} c_{1}+b_{0} c_{2}, 2 a_{1}=2\left(b_{1} c_{0}+b_{0} c_{1}\right)$, and $2 a_{0}=$ $2 b_{0} c_{0}$. Therefore, $g(X)=\left(b_{1} X+b_{0}\right)\left(c_{2} X^{2}+2 c_{1} X+2 c_{0}\right)$, which is a contradiction to that $g(X)$ is irreducible in $\mathbb{Z}[X]$.

To find an equivalent condition for a primitive Hurwitz polynomial $f(X)=\sum_{i=0}^{3} a_{i} X^{i} \in h(\mathbb{Z})$ of degree 3 with $3 \mid a_{3}$, we divide it into two cases; $2 \mid a_{3}$ or $2 \nmid a_{3}$.

Theorem 3.4. Let $f(X)=\sum_{i=0}^{3} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_{3}$. If $2 \mid a_{3}$ and $2 \mid a_{2}$, then the following are equivalent.

1. $f(X)=a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $h(\mathbb{Z})$.
2. $g(X)=\frac{1}{6} a_{3} X^{3}+\frac{1}{2} a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $\mathbb{Z}[X]$.
3. $g(X)$ has no rational roots.

Proof. Note that for each $b_{i}, c_{j} \in \mathbb{Z}$,

$$
\left\{\begin{array}{l}
\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+c_{1} X+c_{0}\right)=3 b_{1} c_{2} X^{3}+\left(2 b_{1} c_{1}+b_{0} c_{2}\right) X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0}, \\
\left(b_{1} X+b_{0}\right)\left(\frac{1}{2} c_{2} X^{2}+c_{1} X+c_{0}\right)=\frac{1}{2} b_{1} c_{2} X^{3}+\left(b_{1} c_{1}+\frac{1}{2} b_{0} c_{2}\right) X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0} .
\end{array}\right.
$$

Since $\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=1, f(X)$ and $g(X)$ are both primitive. Thus if $f(X)$ (resp., $g(X)$) is reducible in $h(\mathbb{Z})$ (resp., $\mathbb{Z}[X]$), then $f(X)$ (resp.,
$g(X)$) is a *-product (resp., usual product) of polynomials of degree one and two.
(1) $\Leftrightarrow(2)$ By the equation above, $f(X)=\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+c_{1} X+c_{0}\right)$ in $h(\mathbb{Z})$ if and only if $g(X)=\left(b_{1} X+b_{0}\right)\left(\frac{1}{2} c_{2} X^{2}+c_{1} X+c_{0}\right)$ in $\mathbb{Q}[X]$. Since $g(X)$ is primitive in $\mathbb{Z}[X], g(X)$ is reducible in $\mathbb{Q}[X]$ if and only if $g(X)$ is reducible in $\mathbb{Z}[X]$ by Gauss Lemma. Therefore $f(X)$ is irreducible in $h(\mathbb{Z})$ if and only if $g(X)$ is irreducible in $\mathbb{Z}[X]$.
$(2) \Leftrightarrow(3)$ Clear.
Theorem 3.5. Let $f(X)=\sum_{i=0}^{3} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_{3}$.

1. If $2 \nmid a_{3}, 2\left|a_{2}, 2\right| a_{1}$, and $4 \mid a_{0}$, then the following are equivalent.
(a) $f(X)=a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $h(\mathbb{Z})$.
(b) $g(X)=\frac{1}{3} a_{3} X^{3}+\frac{1}{2} a_{2} X^{2}+\frac{1}{2} a_{1} X+\frac{1}{4} a_{0}$ is irreducible in $\mathbb{Z}[X]$.
(c) $g(X)$ has no rational roots.
2. If $2 \nmid a_{3}, 2 \nmid a_{2}$, and $2 \nmid a_{0}$, then the following are equivalent.
(a) $f(X)=a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0}$ is irreducible in $h(\mathbb{Z})$.
(b) $g(X)=\frac{1}{3} a_{3} X^{3}+a_{2} X^{2}+2 a_{1} X+2 a_{0}$ is irreducible in $\mathbb{Z}[X]$.
(c) $g(X)$ has no rational roots.

Proof. (1): $(b) \Leftrightarrow(c)$ Clear. $(a) \Leftrightarrow(b)$ Note that for each $b_{i}, c_{j} \in \mathbb{Z}$,

$$
\left\{\begin{array}{l}
\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+c_{1} X+c_{0}\right)=3 b_{1} c_{2} X^{3}+\left(2 b_{1} c_{1}+b_{0} c_{2}\right) X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0}, \\
\left(b_{1} X+\frac{1}{2} b_{0}\right)\left(c_{2} X^{2}+c_{1} X+\frac{1}{2} c_{0}\right)=b_{1} c_{2} X^{3}+\left(b_{1} c_{1}+\frac{1}{2} b_{0} c_{2}\right) X^{2}+\frac{1}{2}\left(b_{1} c_{0}+b_{0} c_{1}\right) X+\frac{1}{4} b_{0} c_{0}
\end{array}\right.
$$

By the equation above, $f(X)=\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+c_{1} X+c_{0}\right)$ in $h(\mathbb{Z})$ if and only if $g(X)=\left(b_{1} X+\frac{1}{2} b_{0}\right)\left(c_{2} X^{2}+c_{1} X+\frac{1}{2} c_{0}\right)$ in $\mathbb{Q}[X]$. Since $g(X)$ is primitive in $\mathbb{Z}[X], g(X)$ is reducible in $\mathbb{Q}[X]$ if and only if $g(X)$ is reducible in $\mathbb{Z}[X]$ by Gauss Lemma. Therefore $f(X)$ is irreducible in $h(\mathbb{Z})$ if and only if $g(X)$ is irreducible in $\mathbb{Z}[X]$.
(2) : $(b) \Leftrightarrow(c)$ Clear. $(b) \Rightarrow(a)$ It follows from Proposition 3.3.
$(a) \Rightarrow(b)$ Let $f(X)$ be irreducible in $h(\mathbb{Z})$. Suppose that $g(X)$ is reducible in $\mathbb{Z}[X]$. Then $g(X)=h(X) k(X)$, where $h(X)$ and $k(X)$ are polynomials over \mathbb{Z} of degree one and two, respectively. Write $h(X)=$ $b_{1} X+b_{0}$ and $k(X)=c_{2} X^{2}+c_{1} X+c_{0}$. So we obtain

$$
\begin{aligned}
g(X) & =\left(b_{1} X+b_{0}\right)\left(c_{2} X^{2}+c_{1} X+c_{0}\right) \\
& =b_{1} c_{2} X^{3}+\left(b_{1} c_{1}+b_{0} c_{2}\right) X^{2}+\left(b_{1} c_{0}+b_{0} c_{1}\right) X+b_{0} c_{0} \\
& =\frac{1}{3} a_{3} X^{3}+a_{2} X^{2}+2 a_{1} X+2 a_{0} .
\end{aligned}
$$

By assumption, we obtain

$$
\left\{\begin{array}{l}
2 \nmid a_{3}=3 b_{1} c_{2}, \quad 2 \nmid a_{2}=b_{1} c_{1}+b_{0} c_{2}, \tag{1}\\
2 a_{1}=b_{1} c_{0}+b_{0} c_{1}, \quad 4 \nmid 2 a_{0}=b_{0} c_{0} .
\end{array}\right.
$$

If $2 \mid b_{0}$, then $2 \nmid c_{0}$. So $2 \mid b_{1}$ and $2 \mid a_{2}$, a contradiction. Hence, $2 \nmid b_{0}, 2 \mid c_{0}$, and $2 \mid c_{1}$. Thus $c_{2} X^{2}+\frac{1}{2} c_{1} X+\frac{1}{2} c_{0} \in h(\mathbb{Z})$. Therefore, $f(X)=\left(b_{1} X+b_{0}\right) *\left(c_{2} X^{2}+\frac{1}{2} c_{1} X+\frac{1}{2} c_{0}\right)$, which is a contradiction to that $f(X)$ is irreducible in $h(\mathbb{Z})$.

Remark 3.6. For primitive Hurwitz polynomials $f(X)$ over \mathbb{Z} of degree 3 except ones in Theorems 3.4 and 3.5, we could not find an equivalent condition for $f(X)$ to be irreducible.

4. Irreducible Hurwitz Polynomials of degree $n \geq 4$

In this section, we give an equivalent condition for Hurwitz polynomials $f(X)$ over \mathbb{Z} of degree $n \geq 4$ under additional conditions on the coefficients of $f(X)$ to be irreducible. We also give a sufficient condition for some Hurwitz polynomials over \mathbb{Z} of degree 4 to be irreducible.

Theorem 4.1. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ be a primitive Hurwitz polynomial of degree $n \geq 4$. If $k!\mid a_{k}$ for each $0 \leq k \leq n$, then the following are equivalent.

1. $f(X)$ is irreducible in $h(\mathbb{Z})$.
2. $g(X)=\sum_{k=0}^{n} \frac{1}{k!} a_{k} X^{k}$ is irreducible in $\mathbb{Z}[X]$.

Proof. (1) $\Rightarrow(2)$ Let $f(X)$ be irreducible in $h(\mathbb{Z})$. Suppose that $g(X)$ is reducible in $\mathbb{Z}[X]$. Since $f(X)$ is primitive, $g(X)$ is also primitive. Then there exist two polynomials $h(X)=\sum_{i=0}^{s} b_{i} X^{i}, k(X)=$ $\sum_{j=0}^{t} c_{j} X^{j} \in \mathbb{Z}[X]$ with $1 \leq s, t \leq n-1$ and $s+t=n$ such that

$$
g(X)=h(X) k(X)
$$

For each $0 \leq i \leq n$, we obtain

$$
\begin{equation*}
a_{i}=i!\sum_{k+l=i} b_{k} c_{l}, \tag{2}
\end{equation*}
$$

where the sum is taken over all the pairs (k, l) such that $k+l=i$ for $0 \leq$ $k \leq s$ and $0 \leq l \leq t$. We now consider $h_{1}(X)=\sum_{i=0}^{s} i!b_{i} X^{i}, k_{1}(X)=$
$\sum_{j=0}^{t} j!c_{j} X^{j} \in h(\mathbb{Z})$. Put $h_{1}(X) * k_{1}(X)=\sum_{i=0}^{n} d_{i} X^{i}$. Then for each $0 \leq i \leq n$, we obtain

$$
\begin{equation*}
d_{i}=\sum_{k+l=i}\binom{i}{k} k!b_{k} l!c_{l}=\sum_{k+l=i} i!b_{k} c_{l}=i!\sum_{k+l=i} b_{k} c_{l}, \tag{3}
\end{equation*}
$$

where the sum is taken over all the pairs (k, l) such that $k+l=i$ for $0 \leq k \leq s$ and $0 \leq l \leq t$. It follows from Equations (2) and (3) that $f(X)=h_{1}(X) * k_{1}(X)$, which is a contradiction to that $f(X)$ is irreducible in $h(\mathbb{Z})$.
$(2) \Rightarrow(1)$ Let $g(X)$ be irreducible in $\mathbb{Z}[X]$. Suppose that $f(X)$ is reducible in $h(\mathbb{Z})$. Since $f(X)$ is primitive, there exist $h(X)=\sum_{i=0}^{s} b_{i} X^{i}, k(X)=$ $\sum_{j=0}^{t} c_{j} X^{j} \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and $s+t=n$ such that

$$
f(X)=h(X) * k(X)
$$

For each $0 \leq i \leq n$, we obtain

$$
\begin{equation*}
a_{i}=\sum_{k+l=i}\binom{i}{k} b_{k} c_{l}, \tag{4}
\end{equation*}
$$

where the sum is taken over all the pairs (k, l) such that $k+l=i$ for $0 \leq$ $k \leq s$ and $0 \leq l \leq t$. We now consider $h_{2}(X)=\sum_{i=0}^{s} \frac{1}{i!} b_{i} X^{i}, k_{2}(X)=$ $\sum_{j=0}^{t} \frac{1}{j!} c_{j} X^{j}$. Note that $h_{2}(X), k_{2}(X) \in \mathbb{Q}[X]$. Put $h_{2}(X) k_{2}(X)=$ $\sum_{i=0}^{n} e_{i} X^{i}$. Then for each $0 \leq i \leq n$, we obtain

$$
\begin{equation*}
e_{i}=\sum_{k+l=i} \frac{1}{k!} b_{k} \frac{1}{l!} c_{l}=\frac{1}{i!} \sum_{k+l=i}\binom{i}{k} b_{k} c_{l}, \tag{5}
\end{equation*}
$$

where the sum is taken over all the pairs (k, l) such that $k+l=i$ for $0 \leq k \leq s$ and $0 \leq l \leq t$. It follows from Equations (4) and (5) that $e_{i}=\frac{1}{i!} a_{i}$ for each $0 \leq i \leq n$. Hence $g(X)=h_{2}(X) k_{2}(X)$ in $\mathbb{Q}[X]$. By Gauss lemma, $g(X)$ is reducible in $\mathbb{Z}[X]$. It is a contradiction to that $g(X)$ is irreducible in $\mathbb{Z}[X]$.

By applying Theorem 4.1 to a primitive Hurwitz polynomial $f(X)=$ $\sum_{i=0}^{4} a_{i} X^{4}$ of degree 4 , we only consider the cases when $k!\mid a_{k}$ for $0 \leq k \leq 4$. Among the cases when $4!\nmid a_{4}$, we consider the case when $4 \nmid a_{4}$ and $6 \mid a_{4}$ for $f(X)=\sum_{i=0}^{4} a_{i} X^{i}$. We start with the following simple observation without proof.

Lemma 4.2. Let $f(X)=\sum_{i=0}^{4} a_{i} X^{i}$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 4 . Then

1. if $f(X)=g(X) * h(X)$, where $\operatorname{deg}(g)=1$ and $\operatorname{deg}(h)=3$, then $4 \mid a_{4}$,
2. if $f(X)=g(X) * h(X)$, where $\operatorname{deg}(g)=\operatorname{deg}(h)=2$, then $6 \mid a_{4}$,
3. if $4 \nmid a_{4}$ and $6 \nmid a_{4}$, then $f(X)$ is irreducible.

Theorem 4.3. Let $f(X)=\sum_{i=0}^{4} a_{i} X^{i}$ be a primitive Hurwitz polynomial of degree 4 such that $6 \mid a_{4}$ and $4 \nmid a_{4}$. Suppose that $g(X)=$ $\frac{1}{6} a_{4} X^{4}+\frac{1}{3} a_{3} X^{3}+\frac{1}{2} a_{2} X^{2}+\frac{1}{2} a_{1} X+\frac{1}{4} a_{0} \in \mathbb{Z}[X]$. If $g(X)$ is irreducible in $\mathbb{Z}[X]$, then $f(X)$ is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that $f(X)$ is reducible in $h(\mathbb{Z})$. Since $6 \mid a_{4}$ and $4 \nmid a_{4}$, there exist $h(X), k(X) \in h(\mathbb{Z})$ of degree 2 such that $f(X)=h(X) * k(X)$ by Lemma 4.2. Let $h(X)=b_{2} X^{2}+b_{1} X+b_{0}$ and $k(X)=c_{2} X^{2}+c_{1} X+c_{0}$. Then we obtain

$$
\left\{\begin{array}{l}
a_{4}=6 b_{2} c_{2}, \tag{6}\\
a_{3}=3 b_{2} c_{1}+3 b_{1} c_{2}, \\
a_{2}=b_{2} c_{0}+2 b_{1} c_{1}+b_{0} c_{2}, \\
a_{1}=b_{1} c_{0}+b_{0} c_{1}, \\
a_{0}=b_{0} c_{0} .
\end{array}\right.
$$

Let $h_{1}(X)=2 b_{2} X^{2}+2 b_{1} X+b_{0}$ and $k_{1}(X)=2 c_{2} X^{2}+2 c_{1} X+c_{0}$. Put $\frac{1}{4} h_{1}(X) k_{1}(X)=\sum_{i=0}^{4} d_{i} X^{i}$. It follows from Equation (6) that

$$
\left\{\begin{array}{l}
d_{4}=b_{2} c_{2}=\frac{1}{6} a_{4} \tag{7}\\
d_{3}=b_{2} c_{1}+b_{1} c_{2}=\frac{1}{3} a_{3} \\
d_{2}=\frac{1}{2} b_{2} c_{0}+b_{1} c_{1}+\frac{1}{2} b_{0} c_{2}=\frac{1}{2} a_{2} \\
d_{1}=\frac{1}{2}\left(b_{1} c_{0}+b_{0} c_{1}\right)=\frac{1}{2} a_{1} \\
d_{0}=\frac{1}{4} b_{0} c_{0}=\frac{1}{4} a_{0}
\end{array}\right.
$$

It follows from Equation (7) that $g(X)=\frac{1}{4} h_{1}(X) k_{1}(X)$. Thus $g(X)$ is reducible over \mathbb{Q}, and hence it is reducible over \mathbb{Z}, which is a contradiction.

Acknowledgments

We would like to thank the referees for several valuable suggestions. This paper contains part of a master's thesis of Y.L.Seo done at Chosun University.

References

[1] A. Benhissi, Ideal structure of Hurwitz series rings, Contrib. Alg. Geom. 48 (1997) 251-256.
[2] A. Benhissi and F. Koja, Basic properties of Hurwitz series rings, Ric. Mat. 61 (2012) 255-273.
[3] W.F. Keigher, Adjunctions and comonads in differential algebra, Pacific J. Math. 59 (1975) 99-112.
[4] W.F. Keigher, On the ring of Hurwitz series, Comm. Algebra 25 (1997), 1845-1859.
[5] J.W. Lim and D.Y. Oh, Composite Hurwitz rings satisfying the ascending chain condition on principal ideals, Kyungpook Math. J. 56 (2016), 11151123.
[6] J.W. Lim and D.Y. Oh, Chain conditions on composite Hurwitz series rings, Open Math. 15 (2017), 1161-1170.
[7] Z. Liu, Hermite and PS-rings of Hurwitz series, Comm. Algebra 28 (2000), 299-305.

Dong Yeol Oh

Department of Mathematics Education
Chosun University, Gwangju 61452, Republic of Korea
E-mail: dyoh@chosun.ac.kr, dongyeol70@gmail.com

Ye Lim Seo

Department of Mathematics Education
Chosun University, Gwangju 61452, Republic of Korea
E-mail: nar4_rim@naver.com

