IRREDUCIBILITY OF HURWITZ POLYNOMIALS OVER THE RING OF INTEGERS

Dong Yeol Oh[†] and Ye Lim Seo

ABSTRACT. Let \mathbb{Z} be the ring of integers and $\mathbb{Z}[X]$ (resp., $h(\mathbb{Z})$) be the ring of polynomials (resp., Hurwitz polynomials) over \mathbb{Z} . In this paper, we study the irreducibility of Hurwitz polynomials in $h(\mathbb{Z})$. We give a sufficient condition for Hurwitz polynomials in $h(\mathbb{Z})$ to be irreducible, and we then show that $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$. By using a relation between usual polynomials in $\mathbb{Z}[X]$ and Hurwitz polynomials in $h(\mathbb{Z})$, we give a necessary and sufficient condition for Hurwitz polynomials over \mathbb{Z} to be irreducible under additional conditions on the coefficients of Hurwitz polynomials.

1. Introduction

Let R be a commutative ring with identity, R[X] (resp., R[X]) the ring of formal power series (resp., polynomials) over R, and H(R) the set of formal expressions of the form $\sum_{n=0}^{\infty} a_n X^n$, where $a_n \in R$ for all $n \geq 1$. We define an addition on H(R) as usual and a multiplication, called *-product, on H(R) as follows: for $f(X) = \sum_{n=0}^{\infty} a_n X^n$, $g(X) = \sum_{n=0}^{\infty} b_n X^n \in H(R)$,

$$f(X) * g(X) = \sum_{n=0}^{\infty} c_n X^n, \ c_n = \sum_{k=0}^{n} {n \choose k} a_k b_{n-k}$$

Received April 24, 2019. Revised May 3, 2019. Accepted May 14, 2019.

2010 Mathematics Subject Classification: 13A05, 13A15, 13F15, 13F20.

Key words and phrases: Hurwitz polynomial ring, irreducible Hurwitz polynomial, primitive polynomial, atomic.

- † This work was supported by Research Fund from Chosun University, 2016.
- © The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

where $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ for nonnegative integers $n \geq k$. It is shown in [3] that H(R) is a commutative ring with identity under these two operations, i.e., H(R) = (R[X], +, *). The ring H(R) is called the ring of Hurwitz series over R. The ring h(R) of Hurwitz polynomials over R is the subring of H(R) consisting of formal expressions of the form $\sum_{k=0}^{n} a_k X^k$, i.e., h(R) = (R[X], +, *). Keigher introduced the ring of Hurwitz series and studied its properties [3, 4]. Since then, many works on the ring of Hurwitz series have been done ([1, 2, 5-7]).

It is known that h(R) is an integral domain if and only if R is an integral domain with $\operatorname{char}(R) = 0$ [1, Proposition 1.1], [3, Corollary 2.8]. For an integral domain R with $\operatorname{char}(R) = 0$, it is shown that h(R) satisfies the ascending chain condition on principal ideals (ACCP) if and only if R satisfies ACCP [5, Theorem 2.4]. So the ring $h(\mathbb{Z})$ of Hurwitz polynomials over \mathbb{Z} is an integral domain satisfying ACCP. Hence $h(\mathbb{Z})$ is atomic, that is, every nonzero nonunit element can be written as a finite product of irreducible elements.

In this paper, we investigate the irreducibility of Hurwitz polynomials in $h(\mathbb{Z})$. This paper consists of four sections including introduction. In Section 2, we give a sufficient condition for Hurwitz polynomials in $h(\mathbb{Z})$ to be irreducible. We then show that $h(\mathbb{Z})$ is not a UFD, thus $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$. For a nonzero element $f(X) = \sum_{i=0}^{n} a_i X^i \in h(\mathbb{Z})$, where $a_n \neq 0$, n is called the degree of f(X) and write $\deg(f) = n$. In Section 3, we completely characterize the irreducible Hurwitz polynomials over \mathbb{Z} of degree 2, and give a necessary and sufficient condition for Hurwitz polynomials f(X) over \mathbb{Z} of degree 3 under some additional conditions on the coefficients of f(X). In Section 4, we give a necessary and sufficient condition for Hurwitz polynomials f(X) over \mathbb{Z} of degree $n \geq 4$ under some additional conditions on the coefficients of f(X).

2. Irreducible Hurwitz Polynomials

Let R be a commutative ring with identity and U(R) be the set of units of R. We start this section with the following simple observation without proof.

LEMMA 2.1. Let D be an integral domain with char(D) = 0. Then U(h(D)) = U(D).

For a nonzero element $f(X) = \sum_{i=0}^{n} a_i X^i \in h(\mathbb{Z})$, we say that f(X) is *primitive* if $gcd(a_0, a_1, \ldots, a_n) = 1$ (i.e., if d divides all a_i , then d is a unit). If a nonzero nonunit element of h(Z) is not primitive, then it is reducible. Clearly every primitive Hurwitz polynomial in h(Z) of degree one is irreducible.

PROPOSITION 2.2. Let $f(X) = \sum_{i=0}^{n} a_i X^i \in h(\mathbb{Z})$ be a primitive Hurwitz polynomial of $\deg(f) = n \geq 2$. If $|a_n| < n$, then f(X) is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that f(X) is reducible in $h(\mathbb{Z})$. Since f(X) is primitive, there exist $g(X) = \sum_{j=0}^{s} b_j X^j, h(X) = \sum_{k=0}^{t} c_k X^k \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and s+t=n such that f(X) = g(X) * h(X). Hence

$$a_n = \binom{s+t}{s} b_s c_t = \binom{n}{s} b_s c_t.$$

Thus $|a_n| \geq n$, which is a contradiction.

The following is a sufficient condition for a Hurwitz polynomial over \mathbb{Z} of a prime power degree to be irreducible, which is an analog of Eisenstein's criterion which gives a sufficient condition for a polynomial in $\mathbb{Z}[X]$ to be irreducible.

PROPOSITION 2.3. Let $n = p^m$, where p is a prime number and $m \ge 1$. Let $f(X) = \sum_{i=0}^n a_n X^n \in h(\mathbb{Z})$ be a primitive Hurwitz polynomial of degree n. If $p \nmid a_n$, then f(X) is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that f(X) is reducible in $h(\mathbb{Z})$. Since f(X) is primitive, there exist $g(X) = \sum_{j=0}^{s} b_j X^j, h(X) = \sum_{k=0}^{t} c_k X^k \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and s+t=n such that f(X) = g(X) * h(X). Hence

$$a_n = \binom{s+t}{s} b_s c_m = \binom{p^m}{s} b_s c_m.$$

Thus $p \mid a_n$, a contradiction.

COROLLARY 2.4. Let $f(X) = \sum_{i=0}^{p} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of prime degree p. If $p \nmid a_p$, then f(X) is irreducible in $h(\mathbb{Z})$.

REMARK 2.5. It is known that if R is an integral domain containing the field \mathbb{Q} of rational numbers, then $h(R) \cong R[X]$ [4, Proposition 2.4]. In general, when R is an integral domain not containing \mathbb{Q} , we do not

know whether h(R) is isomorphic to R[X]. Since $h(\mathbb{Z})$ satisfies ACCP [5, Theorem 2.4], $h(\mathbb{Z})$ is atomic. Clearly, 2 and X are irreducible in $h(\mathbb{Z})$. Note that X^2 is irreducible in $h(\mathbb{Z})$ by Proposition 2.2. Since $2 * X^2 = X * X$, $h(\mathbb{Z})$ is not a UFD. Hence $h(\mathbb{Z})$ is not isomorphic to $\mathbb{Z}[X]$.

3. Irreducible Hurwitz Polynomials of degree < 3

It is well known that a primitive polynomial over \mathbb{Z} is irreducible over \mathbb{Z} if and only if it is irreducible over \mathbb{Q} , which is called Gauss Lemma. Hence a necessary and sufficient condition for a polynomial f(X) over \mathbb{Z} of degree 2 or 3 to be irreducible is that f(X) has no rational zeros. Thus it is easy to determine whether a polynomial over \mathbb{Z} of degree ≤ 3 is irreducible or not. In this section, we give a necessary and sufficient condition for Hurwitz polynomials over \mathbb{Z} of degree ≤ 3 to be irreducible by using the irreducibility of polynomials in $\mathbb{Z}[X]$.

We note that every primitive polynomial of degree one in Z[X] (resp., h(Z)) is irreducible. We start this section with Hurwitz polynomials over \mathbb{Z} of degree 2. Let $f(X) = a_2x^2 + a_1X + a_0 \in h(\mathbb{Z})$, where $a_2 \neq 0$. By Corollary 2.4, we only consider the case when a_2 is even.

THEOREM 3.1. Let $f(X) = \sum_{i=0}^{2} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 2 with $2 \mid a_2$. Then the following are equivalent.

- 1. $f(X) = a_2X^2 + a_1X + a_0$ is irreducible in $h(\mathbb{Z})$.
- 2. $g(X) = \frac{1}{2}a_2X^2 + a_1X + a_0$ is irreducible in $\mathbb{Z}[X]$.

Proof. Note that

$$(b_1X + b_0) * (c_1X + c_0) = {2 \choose 1}b_1c_1X^2 + ({1 \choose 1}b_1c_0 + {1 \choose 0}b_0c_1)X + b_0c_0$$

= $2b_1c_1X^2 + (b_1c_0 + b_0c_1)X + b_0c_0$.

Since $gcd(a_0, a_1, a_2) = 1$, f(X) and g(X) are both primitive. Thus if f(X) (resp., g(X)) is reducible in $h(\mathbb{Z})$ (resp., $\mathbb{Z}[X]$), then f(X) (resp., g(X)) is a *-product (resp., usual product) of two polynomials of degree one. Hence $f(X) = (b_1X + b_0) * (c_1X + c_0)$ in $h(\mathbb{Z})$ if and only if $g(X) = (b_1X + b_0)(c_1X + c_0)$ in $\mathbb{Z}[X]$. Therefore f(X) is irreducible in $h(\mathbb{Z})$ if and only if g(X) is irreducible in $\mathbb{Z}[X]$.

REMARK 3.2. The condition $gcd(a_2, a_1, a_0) = 1$ in Theorem 3.1 is necessary since $X^2 + 2X + 4 \in \mathbb{Z}[X]$ is irreducible, but $2X^2 + 2X + 4 = 2 * (X^2 + X + 2) \in h(\mathbb{Z})$ is reducible.

For a primitive Hurwitz polynomial $f(X) = \sum_{i=0}^{3} a_i X^i \in h(\mathbb{Z})$ of degree 3, we only consider the case when $3 \mid a_3$ by Corollary 2.4. We first give a sufficient condition for a primitive Hurwitz polynomial $f(X) = \sum_{i=0}^{3} a_i X^i \in h(\mathbb{Z})$ of degree 3 with $3 \mid a_3$ to be irreducible.

PROPOSITION 3.3. Let $f(X) = \sum_{i=0}^{3} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_3$. If $g(X) = \frac{1}{3}a_3X^3 + a_2X^2 + 2a_1X + 2a_0$ is irreducible in $\mathbb{Z}[X]$, then f(X) is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that f(X) is reducible in $h(\mathbb{Z})$. Then f(X) = h(X) * k(X), where h(X) and k(X) are Hurwitz polynomials over \mathbb{Z} of degree one and two, respectively. Write $h(X) = b_1X + b_0$ and $k(X) = c_2X^2 + c_1X + c_0$. So we obtain

$$f(X) = (b_1X + b_0) * (c_2X^2 + c_1X + c_0)$$

= $3b_1c_2X^3 + (2b_1c_1 + b_0c_2)X^2 + (b_1c_0 + b_0c_1)X + b_0c_0$
= $a_3X^3 + a_2X^2 + a_1X + a_0$.

Hence, $\frac{1}{3}a_3 = b_1c_2$, $a_2 = 2b_1c_1 + b_0c_2$, $2a_1 = 2(b_1c_0 + b_0c_1)$, and $2a_0 = 2b_0c_0$. Therefore, $g(X) = (b_1X + b_0)(c_2X^2 + 2c_1X + 2c_0)$, which is a contradiction to that g(X) is irreducible in $\mathbb{Z}[X]$.

To find an equivalent condition for a primitive Hurwitz polynomial $f(X) = \sum_{i=0}^{3} a_i X^i \in h(\mathbb{Z})$ of degree 3 with $3 \mid a_3$, we divide it into two cases; $2 \mid a_3$ or $2 \nmid a_3$.

THEOREM 3.4. Let $f(X) = \sum_{i=0}^{3} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_3$. If $2 \mid a_3$ and $2 \mid a_2$, then the following are equivalent.

- 1. $f(X) = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ is irreducible in $h(\mathbb{Z})$.
- 2. $g(X) = \frac{1}{6}a_3X^3 + \frac{1}{2}a_2X^2 + a_1X + a_0$ is irreducible in $\mathbb{Z}[X]$.
- 3. q(X) has no rational roots.

Proof. Note that for each $b_i, c_i \in \mathbb{Z}$,

$$\begin{cases} (b_1X + b_0) * (c_2X^2 + c_1X + c_0) = 3b_1c_2X^3 + (2b_1c_1 + b_0c_2)X^2 + (b_1c_0 + b_0c_1)X + b_0c_0, \\ (b_1X + b_0)(\frac{1}{2}c_2X^2 + c_1X + c_0) = \frac{1}{2}b_1c_2X^3 + (b_1c_1 + \frac{1}{2}b_0c_2)X^2 + (b_1c_0 + b_0c_1)X + b_0c_0. \end{cases}$$

Since $gcd(a_0, a_1, a_2, a_3) = 1$, f(X) and g(X) are both primitive. Thus if f(X) (resp., g(X)) is reducible in $h(\mathbb{Z})$ (resp., $\mathbb{Z}[X]$), then f(X) (resp.,

g(X)) is a *-product (resp., usual product) of polynomials of degree one and two.

(1) \Leftrightarrow (2) By the equation above, $f(X) = (b_1X + b_0)*(c_2X^2 + c_1X + c_0)$ in $h(\mathbb{Z})$ if and only if $g(X) = (b_1X + b_0)(\frac{1}{2}c_2X^2 + c_1X + c_0)$ in $\mathbb{Q}[X]$. Since g(X) is primitive in $\mathbb{Z}[X]$, g(X) is reducible in $\mathbb{Q}[X]$ if and only if g(X) is reducible in $\mathbb{Z}[X]$ by Gauss Lemma. Therefore f(X) is irreducible in $h(\mathbb{Z})$ if and only if g(X) is irreducible in $\mathbb{Z}[X]$.

THEOREM 3.5. Let $f(X) = \sum_{i=0}^{3} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 3 with $3 \mid a_3$.

- 1. If $2 \nmid a_3, 2 \mid a_2, 2 \mid a_1$, and $4 \mid a_0$, then the following are equivalent.
 - (a) $f(X) = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ is irreducible in $h(\mathbb{Z})$.
 - (b) $g(X) = \frac{1}{3}a_3X^3 + \frac{1}{2}a_2X^2 + \frac{1}{2}a_1X + \frac{1}{4}a_0$ is irreducible in $\mathbb{Z}[X]$.
 - (c) g(X) has no rational roots.
- 2. If $2 \nmid a_3, 2 \nmid a_2$, and $2 \nmid a_0$, then the following are equivalent.
 - (a) $f(X) = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ is irreducible in $h(\mathbb{Z})$.
 - (b) $g(X) = \frac{1}{3}a_3X^3 + a_2X^2 + 2a_1X + 2a_0$ is irreducible in $\mathbb{Z}[X]$.
 - (c) g(X) has no rational roots.

Proof. (1): $(b) \Leftrightarrow (c)$ Clear. $(a) \Leftrightarrow (b)$ Note that for each $b_i, c_j \in \mathbb{Z}$,

$$\begin{cases} (b_1X + b_0) * (c_2X^2 + c_1X + c_0) = 3b_1c_2X^3 + (2b_1c_1 + b_0c_2)X^2 + (b_1c_0 + b_0c_1)X + b_0c_0, \\ (b_1X + \frac{1}{2}b_0)(c_2X^2 + c_1X + \frac{1}{2}c_0) = b_1c_2X^3 + (b_1c_1 + \frac{1}{2}b_0c_2)X^2 + \frac{1}{2}(b_1c_0 + b_0c_1)X + \frac{1}{4}b_0c_0. \end{cases}$$

By the equation above, $f(X) = (b_1X + b_0) * (c_2X^2 + c_1X + c_0)$ in $h(\mathbb{Z})$ if and only if $g(X) = (b_1X + \frac{1}{2}b_0)(c_2X^2 + c_1X + \frac{1}{2}c_0)$ in $\mathbb{Q}[X]$. Since g(X) is primitive in $\mathbb{Z}[X]$, g(X) is reducible in $\mathbb{Q}[X]$ if and only if g(X) is reducible in $\mathbb{Z}[X]$ by Gauss Lemma. Therefore f(X) is irreducible in $h(\mathbb{Z})$ if and only if g(X) is irreducible in $\mathbb{Z}[X]$.

- $(2): (b) \Leftrightarrow (c)$ Clear. $(b) \Rightarrow (a)$ It follows from Proposition 3.3.
- $(a) \Rightarrow (b)$ Let f(X) be irreducible in $h(\mathbb{Z})$. Suppose that g(X) is reducible in $\mathbb{Z}[X]$. Then g(X) = h(X)k(X), where h(X) and k(X) are polynomials over \mathbb{Z} of degree one and two, respectively. Write $h(X) = b_1X + b_0$ and $k(X) = c_2X^2 + c_1X + c_0$. So we obtain

$$g(X) = (b_1X + b_0)(c_2X^2 + c_1X + c_0)$$

$$= b_1c_2X^3 + (b_1c_1 + b_0c_2)X^2 + (b_1c_0 + b_0c_1)X + b_0c_0$$

$$= \frac{1}{3}a_3X^3 + a_2X^2 + 2a_1X + 2a_0.$$

By assumption, we obtain

(1)
$$\begin{cases} 2 \nmid a_3 = 3b_1c_2, & 2 \nmid a_2 = b_1c_1 + b_0c_2, \\ 2a_1 = b_1c_0 + b_0c_1, & 4 \nmid 2a_0 = b_0c_0. \end{cases}$$

If $2 \mid b_0$, then $2 \nmid c_0$. So $2 \mid b_1$ and $2 \mid a_2$, a contradiction. Hence, $2 \nmid b_0, 2 \mid c_0$, and $2 \mid c_1$. Thus $c_2X^2 + \frac{1}{2}c_1X + \frac{1}{2}c_0 \in h(\mathbb{Z})$. Therefore, $f(X) = (b_1X + b_0) * (c_2X^2 + \frac{1}{2}c_1X + \frac{1}{2}c_0)$, which is a contradiction to that f(X) is irreducible in $h(\mathbb{Z})$.

REMARK 3.6. For primitive Hurwitz polynomials f(X) over \mathbb{Z} of degree 3 except ones in Theorems 3.4 and 3.5, we could not find an equivalent condition for f(X) to be irreducible.

4. Irreducible Hurwitz Polynomials of degree $n \geq 4$

In this section, we give an equivalent condition for Hurwitz polynomials f(X) over \mathbb{Z} of degree $n \geq 4$ under additional conditions on the coefficients of f(X) to be irreducible. We also give a sufficient condition for some Hurwitz polynomials over \mathbb{Z} of degree 4 to be irreducible.

THEOREM 4.1. Let $f(X) = \sum_{i=0}^{n} a_i X^i$ be a primitive Hurwitz polynomial of degree $n \geq 4$. If $k! \mid a_k$ for each $0 \leq k \leq n$, then the following are equivalent.

- 1. f(X) is irreducible in $h(\mathbb{Z})$.
- 2. $g(X) = \sum_{k=0}^{n} \frac{1}{k!} a_k X^k$ is irreducible in $\mathbb{Z}[X]$.

Proof. (1) \Rightarrow (2) Let f(X) be irreducible in $h(\mathbb{Z})$. Suppose that g(X) is reducible in $\mathbb{Z}[X]$. Since f(X) is primitive, g(X) is also primitive. Then there exist two polynomials $h(X) = \sum_{i=0}^{s} b_i X^i, k(X) = \sum_{j=0}^{t} c_j X^j \in \mathbb{Z}[X]$ with $1 \leq s, t \leq n-1$ and s+t=n such that

$$g(X) = h(X)k(X).$$

For each $0 \le i \le n$, we obtain

$$(2) a_i = i! \sum_{k+l=i} b_k c_l,$$

where the sum is taken over all the pairs (k, l) such that k + l = i for $0 \le k \le s$ and $0 \le l \le t$. We now consider $h_1(X) = \sum_{i=0}^{s} i! b_i X^i, k_1(X) = k \le s$

 $\sum_{j=0}^t j! c_j X^j \in h(\mathbb{Z})$. Put $h_1(X) * k_1(X) = \sum_{i=0}^n d_i X^i$. Then for each $0 \le i \le n$, we obtain

(3)
$$d_i = \sum_{k+l=i} {i \choose k} k! b_k l! c_l = \sum_{k+l=i} i! b_k c_l = i! \sum_{k+l=i} b_k c_l,$$

where the sum is taken over all the pairs (k,l) such that k+l=i for $0 \le k \le s$ and $0 \le l \le t$. It follows from Equations (2) and (3) that $f(X) = h_1(X) * k_1(X)$, which is a contradiction to that f(X) is irreducible in $h(\mathbb{Z})$.

 $(2) \Rightarrow (1)$ Let g(X) be irreducible in $\mathbb{Z}[X]$. Suppose that f(X) is reducible in $h(\mathbb{Z})$. Since f(X) is primitive, there exist $h(X) = \sum_{i=0}^{s} b_i X^i, k(X) = \sum_{j=0}^{t} c_j X^j \in h(\mathbb{Z})$ with $1 \leq s, t \leq n-1$ and s+t=n such that

$$f(X) = h(X) * k(X).$$

For each $0 \le i \le n$, we obtain

$$(4) a_i = \sum_{k+l-i} \binom{i}{k} b_k c_l,$$

where the sum is taken over all the pairs (k,l) such that k+l=i for $0 \le k \le s$ and $0 \le l \le t$. We now consider $h_2(X) = \sum_{i=0}^s \frac{1}{i!} b_i X^i, k_2(X) = \sum_{j=0}^t \frac{1}{j!} c_j X^j$. Note that $h_2(X), k_2(X) \in \mathbb{Q}[X]$. Put $h_2(X)k_2(X) = \sum_{i=0}^n e_i X^i$. Then for each $0 \le i \le n$, we obtain

(5)
$$e_i = \sum_{k+l=i} \frac{1}{k!} b_k \frac{1}{l!} c_l = \frac{1}{i!} \sum_{k+l=i} {i \choose k} b_k c_l,$$

where the sum is taken over all the pairs (k, l) such that k + l = i for $0 \le k \le s$ and $0 \le l \le t$. It follows from Equations (4) and (5) that $e_i = \frac{1}{i!}a_i$ for each $0 \le i \le n$. Hence $g(X) = h_2(X)k_2(X)$ in $\mathbb{Q}[X]$. By Gauss lemma, g(X) is reducible in $\mathbb{Z}[X]$. It is a contradiction to that g(X) is irreducible in $\mathbb{Z}[X]$.

By applying Theorem 4.1 to a primitive Hurwitz polynomial $f(X) = \sum_{i=0}^{4} a_i X^4$ of degree 4, we only consider the cases when $k! \mid a_k$ for $0 \le k \le 4$. Among the cases when $4! \nmid a_4$, we consider the case when $4 \nmid a_4$ and $6 \mid a_4$ for $f(X) = \sum_{i=0}^{4} a_i X^i$. We start with the following simple observation without proof.

LEMMA 4.2. Let $f(X) = \sum_{i=0}^{4} a_i X^i$ be a primitive Hurwitz polynomial over \mathbb{Z} of degree 4. Then

- 1. if f(X) = g(X) * h(X), where deg(g) = 1 and deg(h) = 3, then $4 \mid a_4$,
- 2. if f(X) = g(X) * h(X), where deg(g) = deg(h) = 2, then $6 \mid a_4$,
- 3. if $4 \nmid a_4$ and $6 \nmid a_4$, then f(X) is irreducible.

THEOREM 4.3. Let $f(X) = \sum_{i=0}^4 a_i X^i$ be a primitive Hurwitz polynomial of degree 4 such that $6 \mid a_4$ and $4 \nmid a_4$. Suppose that $g(X) = \frac{1}{6}a_4X^4 + \frac{1}{3}a_3X^3 + \frac{1}{2}a_2X^2 + \frac{1}{2}a_1X + \frac{1}{4}a_0 \in \mathbb{Z}[X]$. If g(X) is irreducible in $\mathbb{Z}[X]$, then f(X) is irreducible in $h(\mathbb{Z})$.

Proof. Suppose that f(X) is reducible in $h(\mathbb{Z})$. Since $6 \mid a_4$ and $4 \nmid a_4$, there exist $h(X), k(X) \in h(\mathbb{Z})$ of degree 2 such that f(X) = h(X) * k(X) by Lemma 4.2. Let $h(X) = b_2 X^2 + b_1 X + b_0$ and $k(X) = c_2 X^2 + c_1 X + c_0$. Then we obtain

(6)
$$\begin{cases} a_4 = 6b_2c_2, \\ a_3 = 3b_2c_1 + 3b_1c_2, \\ a_2 = b_2c_0 + 2b_1c_1 + b_0c_2, \\ a_1 = b_1c_0 + b_0c_1, \\ a_0 = b_0c_0. \end{cases}$$

Let $h_1(X) = 2b_2X^2 + 2b_1X + b_0$ and $k_1(X) = 2c_2X^2 + 2c_1X + c_0$. Put $\frac{1}{4}h_1(X)k_1(X) = \sum_{i=0}^4 d_iX^i$. It follows from Equation (6) that

(7)
$$\begin{cases} d_4 = b_2 c_2 = \frac{1}{6} a_4, \\ d_3 = b_2 c_1 + b_1 c_2 = \frac{1}{3} a_3, \\ d_2 = \frac{1}{2} b_2 c_0 + b_1 c_1 + \frac{1}{2} b_0 c_2 = \frac{1}{2} a_2, \\ d_1 = \frac{1}{2} (b_1 c_0 + b_0 c_1) = \frac{1}{2} a_1, \\ d_0 = \frac{1}{4} b_0 c_0 = \frac{1}{4} a_0. \end{cases}$$

It follows from Equation (7) that $g(X) = \frac{1}{4}h_1(X)k_1(X)$. Thus g(X) is reducible over \mathbb{Q} , and hence it is reducible over \mathbb{Z} , which is a contradiction.

Acknowledgments

We would like to thank the referees for several valuable suggestions. This paper contains part of a master's thesis of Y.L.Seo done at Chosun University.

References

- [1] A. Benhissi, *Ideal structure of Hurwitz series rings*, Contrib. Alg. Geom. **48** (1997) 251–256.
- [2] A. Benhissi and F. Koja, Basic properties of Hurwitz series rings, Ric. Mat. 61 (2012) 255–273.
- [3] W.F. Keigher, Adjunctions and comonads in differential algebra, Pacific J. Math. 59 (1975) 99-112.
- [4] W.F. Keigher, On the ring of Hurwitz series, Comm. Algebra ${\bf 25}$ (1997), $1845{-}1859.$
- [5] J.W. Lim and D.Y. Oh, Composite Hurwitz rings satisfying the ascending chain condition on principal ideals, Kyungpook Math. J. **56** (2016), 1115–1123.
- [6] J.W. Lim and D.Y. Oh, *Chain conditions on composite Hurwitz series rings*, Open Math. **15** (2017), 1161–1170.
- [7] Z. Liu, Hermite and PS-rings of Hurwitz series, Comm. Algebra 28 (2000), 299–305.

Dong Yeol Oh

Department of Mathematics Education Chosun University, Gwangju 61452, Republic of Korea E-mail: dyoh@chosun.ac.kr, dongyeo170@gmail.com

Ye Lim Seo

Department of Mathematics Education Chosun University, Gwangju 61452, Republic of Korea E-mail: nar4_rim@naver.com