NONLINEAR ξ-LIE-*-DERIVATIONS ON VON NEUMANN ALGEBRAS

Aili Yang

Abstract

Let $\mathscr{B}(\mathscr{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} and $\mathscr{M} \subseteq \mathscr{B}(\mathscr{H})$ be a von Neumann algebra without central abelian projections. Let ξ be a non-zero scalar. In this paper, it is proved that a mapping $\varphi: \mathscr{M} \rightarrow \mathscr{B}(\mathscr{H})$ satisfies $\varphi\left([A, B]_{*}^{\xi}\right)=[\varphi(A), B]_{*}^{\xi}+[A, \varphi(B)]_{*}^{\xi}$ for all $A, B \in \mathscr{M}$ if and only if φ is an additive $*$-derivation and $\varphi(\xi A)=\xi \varphi(A)$ for all $A \in \mathscr{M}$.

1. Introduction

Let \mathscr{A} be an associative $*$-algebra over the complex field \mathbb{C} and ξ be a non-zero scalar. For $A, B \in \mathscr{A}$, define the ξ-Lie-* product of A and B as $[A, B]_{*}^{\xi}=A B-\xi B A^{*}$. A mapping φ between $*$-algebras A and B is said to preserve the ξ-Lie-* product if $\varphi\left([A, B]_{*}^{\xi}\right)=[\varphi(A), B]_{*}^{\xi}+[A, \varphi(B)]_{*}^{\xi}$ for all $A, B \in \mathscr{M}$. A map: $\mathscr{A} \rightarrow \mathscr{A}$ is said to be an additive $*$-derivation if it is an additive derivation and satisfies $\delta\left(A^{*}\right)=\delta(A)^{*}$ for all $A \in \mathscr{A}$. Let $\phi: \mathscr{A} \rightarrow \mathscr{A}$ be a map (without the additivity assumption). We say that ϕ is a nonlinear $*$-Lie derivation if $\phi\left([A, B]_{*}\right)=[\phi(A), B]_{*}+[A, \phi(B)]_{*}$ for all $A, B \in \mathscr{A}$, where $[A, B]_{*}=A B-B A^{*}$.

[^0]The structure of linear Lie derivations on C^{*}-algebras has attracted some attention over past years. Johnson [1] proved that every continuous linear Lie derivation from a C^{*}-algebra A into a Banach \mathscr{A}-bimodule \mathscr{E} can be decomposed as $\delta+h$, Where $\delta: \mathscr{A} \rightarrow \mathscr{E}$ is a derivation and h is a linear mapping from \mathscr{A} into the center of \mathscr{E}. Mathieu and Villena [2] proved that every linear Lie derivation on a C^{*}-algebra can be decomposed into the sum of a derivation and a center-valued trace. In [3], Zhang proved the same result for nest subalgebras of factor von Neumann algebras. Cheung gave in [4] a characterization of linear Lie derivations on triangular algebras. Qi and Hou [5] discussed additive ξ Lie derivations on nest algebras. The most interesting result on additive Lie derivations of prime rings was obtained in [6]. However, the structure of nonlinear Lie derivations or nonlinear $*$-Lie derivations on operator algebras is not clear, it needs to be discussed further. In [7], Cheng and Zhang investigated nonlinear Lie derivations on upper triangular matrix algebras. Yu and Zhang [8] proved that every nonlinear Lie derivations of triangular algebras is the sum of an additive derivation and a map into its centers ending commutators to zero. Motivated by these study, we consider nonlinear $*$-Lie derivations on von Neumann algebras.

As usual, \mathbb{R} and \mathbb{C} denote respectively the real field and complex field. Let \mathscr{H} be a complex Hilbert space. We denote by $\mathscr{B}(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H}. Recall that \mathscr{M} is a factor if its center is $\mathbb{C} I$ where I is the identity of \mathscr{M}.

2. Main result and the proof

In this section, our main result is the following theorem.
Main Theorem. Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then, a mapping $\varphi: \mathscr{M} \rightarrow \mathscr{B}(\mathscr{H})$ satisfies $\varphi\left([A, B]_{*}^{\xi}\right)=[\varphi(A), B]_{*}^{\xi}+[A, \varphi(B)]_{*}^{\xi}$ for all $A, B \in \mathscr{M}$ if and only if φ is an additive $*$-derivation.

Before proving the theorem, we need some notations and preliminaries about von Neumann algebras. A von Neumann algebra \mathscr{M} is a weakly closed, self-adjoint algebra of operators on a Hilbert space \mathscr{H} containing the identity I. The set $\mathcal{Z}_{\mathscr{M}}=\{Z \in \mathscr{M}: Z M=M Z, \forall M \in \mathscr{M}\}$ is called the centre of \mathscr{M}. A projection P is called the central abelian projection if $P \in \mathcal{Z}_{\mathscr{M}}$ and $P \mathscr{M} P$ is abelian. Recall that the central carrier of M,
denoted by \bar{M}, is the smallest central projection P satisfying $P M=M$. It is not difficult that the central carrier of M is the projection onto the closed subspace span by $\{N M(h): h \in \mathscr{H}\}$. If M is self-adjoint, then the core Q satisfying $Q \leq P$. A projection P is said to be core-free if $\underline{P}=0$. It is clear that $\underline{P}=0$ if and only if $\overline{I-P}=I$.

Lemma 2.1 ([9, Lemma 4]) Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then each nonzero cental projection in \mathscr{M} is the central carrier of a core-free projection in \mathscr{M}.

Lemma 2.2 Let \mathscr{M} be a von Neumann algebra on a Hilbert space \mathscr{H}. Let $A \in \mathscr{B}(\mathscr{H})$ and $P \in \mathscr{M}$ is a projection with $\bar{P}=I$.
(a) If $A B P=0$ for all $B \in \mathscr{M}$, then $A=0$;
(b) If $[P T(I-P), A]_{*}^{\xi}=0$ for all $T \in \mathscr{M}$, then $A(I-P)=0$.

Proof. (a) It follows from $\bar{P}=I$ that the linear span of $\{B P(x): x \in$ $\mathscr{H}\}$ is dense in \mathscr{H}. So $A B P=0$ for all $B \in \mathscr{M}$ implies $A=0$.
(b) Since $[P T(I-P), A]_{*}^{\xi}=P T(I-P) A-\xi A(I-P) T^{*} P=0$, by replacing $i T$ by T, we get $P T(I-P) A+\xi A(I-P) T^{*} P=0$ and hence $A(I-P) T^{*} P=0$ for all $A \in \mathscr{M}$. By (a), $A(I-P)=0$.

By Lemma 2.1, there exists a projection P such that $\underline{P}=0$ and $\bar{P}=I$. Throughout the paper, $P_{1}=P$ is fixed, and let $P_{2}=I-P$. Set $\mathscr{M}_{i j}=P_{i} \mathscr{M} P_{j}$. Then $\mathscr{M}=\sum_{i, j}^{2} \mathscr{M}_{i j}$.

Lemma 2.3 Let \mathscr{M} be a von Neumann algebra without central abelian projections, and ξ be a non-zero scalar. Then, a mapping $\varphi: \mathscr{M} \rightarrow$ $\mathscr{B}(\mathscr{H})$ satisfies $\varphi\left([A, B]_{*}^{\xi}\right)=[\varphi(A), B]_{*}^{\xi}+[A, \varphi(B)]_{*}^{\xi}$ for all $A, B \in \mathscr{M}$, then φ is additive.

Proof. We shall organize the proof in a series of claims.
Claim $1 \varphi(0)=0$.
Indeed, $\varphi(0)=\varphi\left([0,0]_{*}^{\xi}\right)=[\varphi(0), 0]_{*}^{\xi}+[0, \varphi(0)]_{*}^{\xi}=0$.
Claim 2 For $i, j, k \in\{1,2\}, i \neq j, A_{k k} \in \mathscr{M}_{k k}, B_{i j} \in \mathscr{M}_{i j}$, we have

$$
\varphi\left(A_{k k}+B_{i j}\right)=\varphi\left(A_{k k}\right)+\varphi\left(B_{i j}\right) .
$$

We only prove the case $i=k=1, j=2$, the proof of the other cases is similar. Let $T=T_{11}+T_{12}+T_{21}+T_{22}=\varphi\left(A_{k k}+B_{i j}\right)-\varphi\left(A_{k k}\right)-\varphi\left(B_{i j}\right)$. We only need to prove $T=0$.

For any $\alpha \in \mathbb{C}$, since $\left[\alpha P_{2}, A_{11}\right]_{*}^{\xi}=0$ and $\left[\alpha P_{2}, A_{11}+B_{12}\right]_{*}^{\xi}=\left[\alpha P_{2}, B_{12}\right]_{*}^{\xi}$, it follows from Claim 1 that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha P_{2}\right), A_{11}+B_{12}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}+B_{12}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha P_{2}, A_{11}+B_{12}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{2}, B_{12}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{2}, A_{11}\right]_{]_{k}^{\xi}}^{\xi}\right)+\varphi\left(\left[\alpha P_{2}, B_{12}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha P_{2}\right), A_{11}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}\right)\right]_{*}^{\xi}+\left[\varphi\left(\alpha P_{2}\right), B_{12}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(B_{12}\right)\right]_{*}^{\xi} \\
& =\left[\varphi\left(\alpha P_{2}\right), A_{11}+B_{12}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)\right]_{*}^{\xi_{*}} .
\end{aligned}
$$

Hence $\left[\alpha P_{2}, \varphi\left(A_{11}+B_{12}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{12}\right)\right]_{*}^{\xi}=0$, that is, $\left[\alpha P_{2}, T\right]_{*}^{\xi}=0$, so $\alpha P_{2} T-\bar{\alpha} \xi T P_{2}=0$ for any $\alpha \in \mathbb{C}$. Let $\alpha-\bar{\alpha} \xi \neq 0$, we have $T_{12}=$ $T_{21}=T_{22}=0$.

Similarly, since $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, B_{12}\right]_{*}^{\xi}=0$ and $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{11}+B_{12}\right]_{*}^{\xi}=$ $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{11}\right]_{*}^{\xi}$, it follows that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{11}+B_{12}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{11}+B_{12}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{11}+B_{12}^{\xi}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{11}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{11}^{\xi}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, B_{12}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{11}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{11}\right)\right]_{*}^{\xi} \\
& +\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), B_{12}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(B_{12}\right)\right]_{*}^{\xi} \\
& =\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{11}+B_{12}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)\right]_{*}^{\xi} .
\end{aligned}
$$

Hence $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{11}+B_{12}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{12}\right)\right]_{*}^{\xi}=0$, that is, $\left[\alpha \xi P_{1}+\right.$ $\left.\bar{\alpha} P_{2}, T\right]_{*}^{\xi}=0$, from which and the result $T_{12}=T_{21}=T_{22}=0$ we have $(\alpha-\alpha \xi) T_{11}=0$ for any $\alpha \in \mathbb{C}$, so $T_{11}=0$, hence $\varphi\left(A_{11}+B_{12}\right)=$ $\varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)$.

Claim 3 For $A_{11} \in \mathscr{M}_{11}, B_{22} \in \mathscr{M}_{22}$, we have

$$
\varphi\left(A_{11}+B_{22}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{22}\right) .
$$

We let $T=T_{11}+T_{12}+T_{21}+T_{22}=\varphi\left(A_{11}+B_{22}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{22}\right)$, then, we only need to prove that $T=0$.

For any $\alpha \in \mathbb{C}$, since $\left[\alpha P_{1}, B_{22}\right]_{*}^{\xi}=0$ and $\left[\alpha P_{1}, A_{11}+B_{22}\right]_{*}^{\xi}=\left[\alpha P_{1}, A_{11}\right]_{*}^{\xi}$, it follows that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha P_{1}\right), A_{11}+B_{22}\right]_{*}^{\xi}+\left[\alpha P_{1}, \varphi\left(A_{11}+B_{22}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha P_{1}, A_{11}+B_{22}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{1}, B_{22}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{1}, A_{11}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha P_{1}, B_{22}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha P_{1}\right), A_{11}\right]_{*}^{\xi}+\left[\alpha P_{1}, \varphi\left(A_{11}\right)\right]_{*}^{\xi}+\left[\varphi\left(\alpha P_{1}\right), B_{22}\right]_{*}^{\xi}+\left[\alpha P_{1}, \varphi\left(B_{22}\right)\right]_{*}^{\xi} \\
& =\left[\varphi\left(\alpha P_{1}\right), A_{11}+B_{22}\right]_{*}^{\xi}+\left[\alpha P_{1}, \varphi\left(A_{11}\right)+\varphi\left(B_{22}\right)\right]_{*}^{\xi} .
\end{aligned}
$$

Consequently, $\left[\alpha P_{1}, \varphi\left(A_{11}+B_{22}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{22}\right)\right]_{*}^{\xi}=0$, that is, $\left[\alpha P_{1}, T\right]_{*}^{\xi}=0$, so $\alpha P_{1} T-\bar{\alpha} \xi T P_{1}=0$ for any $\alpha \in \mathbb{C}$. Let $\alpha-\bar{\alpha} \xi \neq 0$, we have $T_{11}=T_{12}=T_{21}=0$. Similarly, we have $T_{22}=0$. Hence $T=0$, that is, $\varphi\left(A_{11}+B_{22}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{22}\right)$.

Claim 4 For $A_{12} \in \mathscr{M}_{12}, B_{21} \in \mathscr{M}_{21}$, we have

$$
\varphi\left(A_{12}+B_{21}\right)=\varphi\left(A_{12}\right)+\varphi\left(B_{21}\right) .
$$

We let $T=T_{11}+T_{12}+T_{21}+T_{22}=\varphi\left(A_{12}+B_{21}\right)-\varphi\left(A_{12}\right)-\varphi\left(B_{21}\right)$, then we only need to prove that $T=0$. Since $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{12}\right]_{*}^{\xi}=0$ and $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{12}+B_{21}\right]_{*}^{\xi}=\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, B_{21}\right]_{*}^{\xi}$, it follows that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{12}+B_{21}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{12}+B_{21}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{12}+B_{21}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, B_{21}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, A_{12}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, B_{21}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{12}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{12}\right)\right]_{*}^{\xi} \\
& +\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), B_{21}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(B_{21}\right)\right]_{*}^{\xi} \\
& =\left[\varphi\left(\alpha \xi P_{1}+\bar{\alpha} P_{2}\right), A_{12}+B_{21}\right]_{*}^{\xi}+\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{12}\right)+\varphi\left(B_{21}\right)\right]_{*}^{\xi} .
\end{aligned}
$$

Therefore, $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, \varphi\left(A_{12}+B_{21}\right)-\varphi\left(A_{12}\right)-\varphi\left(B_{21}\right)\right]_{*}^{\xi}=0$, that is, $\left[\alpha \xi P_{1}+\bar{\alpha} P_{2}, T\right]_{*}^{\xi}=0$, from which we get $T_{11}=T_{22}=0$.

And since $\left[A_{12}, P_{1}\right]_{*}^{\xi}=0$, it follows that $\varphi\left(\left[A_{12}+B_{21}, P_{1}\right]_{*}^{\xi}\right)=\varphi\left(\left[A_{12}, P_{1}\right]_{*}^{\xi}\right)+$ $\varphi\left(\left[B_{21}, P_{1}\right]_{*}^{\xi}\right)$. Hence $\left[T, P_{1}\right]_{*}^{\xi}$, from which we get $T_{21}=0$. Similarly, $T_{12}=0$. Therefore, $\varphi\left(A_{12}+B_{21}\right)=\varphi\left(A_{12}\right)+\varphi\left(B_{21}\right)$.

Claim 5 For $A_{11} \in \mathscr{M}_{11}, B_{12} \in \mathscr{M}_{12}, C_{21} \in \mathscr{M}_{21}, D_{22} \in \mathscr{M}_{22}$, we have

$$
\varphi\left(A_{11}+A_{12}+C_{21}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)
$$

and

$$
\varphi\left(D_{22}+A_{12}+C_{21}\right)=\varphi\left(D_{22}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right) .
$$

We only need to prove that $T=\varphi\left(A_{11}+A_{12}+C_{21}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{12}\right)-$ $\varphi\left(C_{21}\right)=0$. Similarly, we can prove $\varphi\left(D_{22}+A_{12}+C_{21}\right)=\varphi\left(D_{22}\right)+$ $\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)$. For any $\alpha \in \mathbb{C}$, since $\left[\alpha P_{2}, A_{11}\right]_{*}^{\xi}=0$ and $\left[\alpha P_{2}, A_{11}+\right.$ $\left.B_{12}\right]_{*}^{\xi}=\left[\alpha P_{2}, B_{12}\right]_{*}^{\xi}$, it follows from Claim 4 that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}+B_{12}+C_{21}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha P_{2}, A_{11}+B_{12}+C_{21}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{2}, B_{12}\right]_{*}^{\xi}\right) \\
& =\varphi\left(\left[\alpha P_{2}, A_{11}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha P_{2}, B_{12}+C_{21}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha P_{2}\right), A_{11}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}\right)\right]_{*}^{\xi} \\
& \quad+\left[\varphi\left(\alpha P_{2}\right), B_{12}+C_{21}\right\}_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(B_{12}+C_{21}\right)\right]_{*}^{\xi} \\
& =\left[\varphi\left(\alpha P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}\right)+\varphi\left(B_{12}+\varphi\left(C_{21}\right)\right)\right]_{*}^{\xi} .
\end{aligned}
$$

Hence $\left[\alpha P_{2}, T\right]_{*}^{\xi}=0$ for any $\alpha \in \mathbb{C}$, from which we get $T_{12}=T_{21}=T_{22}=$ 0.

Since $\left[\bar{\alpha} P_{1}+\alpha \xi P_{2}, C_{21}\right]_{*}^{\xi}=0$, it follows from Claim 2 that

$$
\begin{aligned}
& {\left[\varphi\left(\bar{\alpha} P_{1}+\alpha \xi P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*}^{\xi}+\left[\alpha P_{2}, \varphi\left(A_{11}+B_{12}+C_{21}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\bar{\alpha} P_{1}+\alpha \xi P_{2}, A_{11}+B_{12}+C_{21} \xi_{*}^{\xi}\right)\right. \\
& =\varphi\left(\left[\bar{\alpha} P_{1}+\alpha \xi P_{2}, A_{11}+B_{12}\right]_{*}^{\xi}\right)+\varphi\left(\left[\bar{\alpha} P_{1}+\alpha \xi P_{2}, C_{21}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\bar{\alpha} P_{1}+\alpha \xi P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*}^{\xi}+\left[\bar{\alpha} P_{1}\right. \\
& \left.\quad+\alpha \xi P_{2}, \varphi\left(A_{11}\right)+\varphi\left(B_{12}+\varphi\left(C_{21}\right)\right)\right]_{*}^{\xi} .
\end{aligned}
$$

Hence $\left[\bar{\alpha} P_{1}+\alpha \xi P_{2}, T\right]_{*}^{\xi}=0$ for any $\alpha \in \mathbb{C}$, from which we get $T_{11}=0$. So $T=0$. Therefore, $\varphi\left(A_{11}+A_{12}+C_{21}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)$. Similarly, we have $\varphi\left(D_{22}+A_{12}+C_{21}\right)=\varphi\left(D_{22}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)$.

Claim 6 For $A_{i j}, B_{i j} \in \mathscr{M}_{i j}, 1 \leq i \neq j \leq 2$, we have

$$
\varphi\left(A_{i j}+B_{i j}\right)=\varphi\left(A_{i j}\right)+\varphi\left(B_{i j}\right)
$$

Compute $\left[P_{i}+A_{i j}, P_{j}+B_{i j}\right]_{*}^{\xi}=A_{i j}+B_{i j}-\xi A_{i j}^{*}-\xi B_{i j} A_{i j}^{*}$. It follows from Claim 5 and Claim 2 that

$$
\begin{aligned}
& \varphi\left(A_{i j}+B_{i j}\right)-\varphi\left(\xi A_{i j}^{*}\right)-\varphi\left(\xi B_{i j} A_{i j}^{*}\right) \\
& =\varphi\left(\left[P_{i}+A_{i j}, P_{j}+B_{i j}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(P_{i}+A_{i j}\right), P_{j}+B_{i j}\right]_{*}^{\xi}+\left[P_{i}+A_{i j}, \varphi\left(P_{j}+B_{i j}\right)\right]_{*}^{\xi} \\
& =\left[\delta\left(P_{i}\right)+\varphi\left(A_{i j}\right), P_{j}+B_{i j}\right]_{*}^{\xi}+\left[P_{i}+A_{i j}, \varphi\left(P_{j}\right)+\varphi\left(B_{i j}\right)\right]_{*}^{\xi} \\
& =\varphi\left(A_{i j}\right)+\varphi\left(B_{i j}\right)-\varphi\left(\xi A_{i j}^{*}\right)-\varphi\left(\xi B_{i j} A_{i j}^{*}\right) .
\end{aligned}
$$

Consequently, $\varphi\left(A_{i j}+B_{i j}\right)=\varphi\left(A_{i j}\right)+\varphi\left(B_{i j}\right)$.
Claim 7 For $A_{i i}, B_{i i} \in \mathscr{M}_{i i}, i=1,2$, we have

$$
\varphi\left(A_{i i}+B_{i i}\right)=\varphi\left(A_{i i}\right)+\varphi\left(B_{i i}\right) .
$$

Let $T=\varphi\left(A_{i i}+B_{i i}\right)-\varphi\left(A_{i i}\right)-\varphi\left(B_{i i}\right)$. We only need to prove $T=0$.
For any $\alpha \in \mathbb{C}$, since $\left[\alpha P_{j}, A_{i i}\right]_{*}^{\xi}=\left[\alpha P_{j}, B_{i i}\right]_{*}^{\xi}=\left[\alpha P_{j}, A_{i i}+B_{i i}\right]_{*}^{\xi}=$ $0(i \neq j)$, it follows that

$$
\varphi\left(\left[\alpha P_{j}, A_{i i}+B_{i i}\right]_{*}^{\xi}\right)=\varphi\left(\left[\alpha P_{j}, A_{i i}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha P_{j}, B_{i i}\right]_{*}^{\xi}\right) .
$$

Hence, $\left.\left[\alpha P_{j}, T\right]_{*}^{\xi}\right)=0$, from which we get that $T_{i j}=T_{j i}=T_{j j}=0$.

For any $C_{i j} \in \mathscr{M}_{i j}(i \neq j)$, it follows from Claim 6 that

$$
\begin{aligned}
& {\left[\varphi\left(A_{i i}+B_{i i}\right), C_{i j}\right]_{*}^{\xi}+\left[A_{i i}+B_{i i}, \varphi\left(C_{i j}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\left(A_{i i}+B_{i i}\right), C_{i j}\right]_{*}^{\xi}\right) \\
& =\varphi\left(A_{i i} C_{i j}+B_{i i} C_{i j}\right) \\
& =\varphi\left(A_{i i} C_{i j}\right)+\varphi\left(B_{i i} C_{i j}\right) \\
& =\varphi\left(\left[A_{i i}, C_{i j}\right]_{*}^{\xi}\right)+\varphi\left(\left[B_{i i}, C_{i j}\right]_{*}^{\xi}\right) \\
& =\left[\left(\varphi\left(A_{i i}\right)+\varphi\left(B_{i i}\right)\right), C_{i j}\right]_{*}^{\xi}+\left[A_{i i}+B_{i i}, \varphi\left(C_{i j}\right)\right] .
\end{aligned}
$$

Consequently, $\left[T_{i i}, C_{i j}\right]_{*}^{\xi}=0$, that is, $T_{i i} C_{i j}=0$ for any $C_{i j} \in \mathscr{M}_{i j}$. Note that $\overline{I-P}=I$. It follows from Lemma 2.2 (1) that $T_{i i}=0$. So $\varphi\left(A_{i i}+B_{i i}\right)=\varphi\left(A_{i i}\right)+\varphi\left(B_{i i}\right)$.

Claim 8 For $A_{11} \in \mathscr{M}_{11}, B_{12} \in \mathscr{M}_{12}, C_{21} \in \mathscr{M}_{21}, D_{22} \in \mathscr{M}_{22}$, we have

$$
\varphi\left(A_{11}+A_{12}+C_{21}+D_{22}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)+\varphi\left(D_{22}\right)
$$

Let $T=\varphi\left(A_{11}+A_{12}+C_{21}+D_{22}\right)-\varphi\left(A_{11}\right)-\varphi\left(B_{12}\right)-\varphi\left(C_{21}\right)-\varphi\left(D_{22}\right)$. We only need to prove $T=0$.

For any $\alpha \in \mathbb{C}$, since $\left[\alpha P_{1}, D_{22}\right]_{*}^{\xi}=0$, It follows from Claim 5 that

$$
\begin{aligned}
& {\left[\varphi\left(\alpha P_{1}\right), A_{11}+A_{12}+C_{21}+D_{22}\right]_{*}^{\xi}+\left[\alpha P_{1}, \varphi\left(A_{11}+A_{12}+C_{21}+D_{22}\right)\right]_{*}^{\xi}} \\
& =\varphi\left(\left[\alpha P_{1}, A_{11}+A_{12}+C_{21}+D_{22} \xi_{*}^{\xi}\right)\right. \\
& =\varphi\left(\left[\alpha P_{1}, A_{11}+A_{12}+C_{21}\right]_{*}^{\xi}\right)+\varphi\left(\left[\alpha P_{1}, D_{22}\right]_{*}^{\xi}\right) \\
& =\left[\varphi\left(\alpha P_{1}\right), A_{11}+A_{12}+C_{21}+D_{22}\right]_{*}^{\xi} \\
& \quad+\left[\alpha P_{1}, \varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)+\varphi\left(C_{21}\right)+\varphi\left(D_{22}\right)\right]_{*}^{\xi}
\end{aligned}
$$

Hence, $\left[\alpha P_{1}, T\right]_{*}^{\xi}=0$, from which we have $T_{11}=T_{12}=T_{21}=0$. Similarly, we can get $T_{22}=0$. Hence, $\varphi\left(A_{11}+A_{12}+C_{21}+D_{22}\right)=\varphi\left(A_{11}\right)+\varphi\left(B_{12}\right)+$ $\varphi\left(C_{21}\right)+\varphi\left(D_{22}\right)$.

Claim 9φ is additive.
It is an immediate consequence of Claims 6,7 and 8.
Lemma 2.4 For any $A \in \mathscr{M}$, we have $\varphi(\xi A)=\xi \varphi(A)$ and $\varphi\left(A^{*}\right)=$ $\varphi(A)^{*}$.

Proof. For any $A \in \mathscr{M}$, it follows from $\varphi(I)=0$ that

$$
\varphi(A)-\varphi(\xi A)=\varphi\left([I, A]_{*}^{\xi}\right)=[I, \varphi(A)]_{*}^{\xi}=\varphi(A)-\xi \varphi(A) .
$$

On the other hand, we have

$$
\varphi(A)-\xi \varphi\left(A^{*}\right)=\varphi\left([A, I]_{*}^{\xi}\right)=[\varphi(A), I]_{*}^{\xi}=\varphi(A)-\xi \varphi(A)^{*}
$$

Proof of Main Theorem By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get that if $\varphi\left([A, B]_{*}^{\xi}\right)=[\varphi(A), B]_{*}^{\xi}+[A, \varphi(B)]_{*}^{\xi}$ for all $A, B \in \mathscr{M}$, then φ is an additive $*$-derivation and $\varphi(\xi A)=\xi \varphi(A)$ for all $A \in \mathscr{M}$.

Acknowledgement: The authors would like to thank the referee for excellent suggestions which helped us to improve considerably the first version of the article.

References

[1] B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. 120 (1996), 455-473.
[2] M. Mathieu and A.R. Villena, The structure of Lie derivations on C^{*}-algebras, J. Funct. Anal. 202 (2003), 504-525.
[3] J.-H. Zhang, Lie derivations on nest subalgebras of von Neumann algebras, Acta Math. Sinica 46 (2003), 657-664.
[4] W.S. Cheung, Lie derivation of triangular algebras, Linear and Multilinear Algebra 51 (2003), 299-310.
[5] X.F. Qi and J.C. Hou, Additive Lie (ξ-Lie) derivations and generalized Lie (ξ Lie) derivations on nest algebras, Linear Algebra Appl. 431 (2009), 843-854.
[6] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
[7] Lin Chen and J. H. Zhang, Nonlinear Lie derivation on upper triangular matrix algebras, Linear and Multilinear Algebra 56 (6) (2008)725-730.
[8] W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), 2953-2960.
[9] Miers CR, Lie isomorphisms of operator algebras, Pacific J. Math. 1971;38, 717735.

Aili Yang

College of Science
Xi'an University of Science and Technology
Xi'an 710054, P. R. China
E-mail: yangaili@xust.edu.cn

[^0]: Received May 16, 2019. Revised November 10, 2019. Accepted November 13, 2019.

 2010 Mathematics Subject Classification: 47B47 46L40.
 Key words and phrases: $*$-derivation; ξ-Lie-* derivations; von Neumann algebras.
 This work is partially supported by Shannxi Natural Science Foundation(112/6121618059).
 (C) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

