THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

Jonghyeon Lee and Heesung Shin* ${ }^{*}$

Abstract

Let $P(G, \lambda)$ denote the number of proper vertex colorings of G with λ colors. The chromatic polynomial $P\left(C_{n}, \lambda\right)$ for the cycle graph C_{n} is well-known as $$
P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)
$$ for all positive integers $n \geq 1$. Also its inductive proof is widely wellknown by the deletion-contraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph C_{n}.

1. Introduction

The number of proper colorings of a graph with finite colors was introduced only for planar graphs by George David Birkhoff [1] in 1912, in an attempt to prove the four color theorem, where the formula for this number was later called by the chromatic polynomial. In 1932, Hassler Whitney [3] generalized Birkhoff's formula from the planar graphs to general graphs. In 1968, Ronald Cedric Read [2] introduced the concept of chromatically equivalent graphs and asked which polynomials are the chromatic polynomials of some graph, that remains open.

[^0]

Figure 1. $G, G-e$ and G / e

Chromatic polynomial. For a graph G, a coloring means almost always a (proper) vertex coloring, which is a labeling of vertices of G with colors such that no two adjacent vertices have the same colors. Let $P(G, \lambda)$ denote the number of (proper) vertex colorings of G with λ colors and $\chi(G)$ the least number λ satisfying $P(G, \lambda)>0$, where $P(G, \lambda)$ and $\chi(G)$ are called a chromatic polynomial and chromatic number of G, respectively.

In fact, it is clear that the number of λ-colorings is a polynomial in λ from a deletion-contraction recurrence.

Proposition 1 (Deletion-contraction recurrence). For a given a graph G and an edge e in G, we have

$$
\begin{equation*}
P(G, \lambda)=P(G-e, \lambda)-P(G / e, \lambda), \tag{1}
\end{equation*}
$$

where $G-e$ is a graph obtained by deletion the edge e and G / e is a graph obtained by contraction the edge e.

Example. The chromatic polynomials of graphs in Figure 1 are

$$
\begin{aligned}
P(G, \lambda) & =\lambda(\lambda-1)^{2}(\lambda-2), \\
P(G-e, \lambda) & =\lambda^{2}(\lambda-1)(\lambda-2), \text { and } \\
P(G / e, \lambda) & =\lambda(\lambda-1)(\lambda-2) .
\end{aligned}
$$

It is confirmed that (1) is true for the graph G and the edge e in Figure 1.

Cycle graph. A cycle graph C_{n} is a graph that consists of a single cycle of length n, which could be drown by a n-polygonal graph in a plane. The chromatic polynomial for cycle graph C_{n} is well-known as follows.

C_{1}

C_{2}

C_{3}

C_{4}

C_{5}

Figure 2. $C_{n}(1 \leq n \leq 5)$

Theorem 2. For a positive integer $n \geq 1$, the chromatic polynomial for cycle graph C_{n} is

$$
\begin{equation*}
P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1) \tag{2}
\end{equation*}
$$

Example. For an integer $n \leq 3$, it is easily checked that the chromatic polynomials of C_{n} are from (2) as follows.

$$
\begin{aligned}
& P\left(C_{1}, \lambda\right)=(\lambda-1)+(-1)(\lambda-1)=0 \\
& P\left(C_{2}, \lambda\right)=(\lambda-1)^{2}+(-1)^{2}(\lambda-1)=\lambda(\lambda-1), \\
& P\left(C_{3}, \lambda\right)=(\lambda-1)^{3}+(-1)^{3}(\lambda-1)=\lambda(\lambda-1)(\lambda-2) .
\end{aligned}
$$

As shown in Figure 2, the cycle graph C_{1} is a graph with one vertex and one loop and C_{1} cannot be colored, that means $P\left(C_{1}, \lambda\right)=0$. The cycle graph C_{2} is a graph with two vertices, where two edges between two vertices, and C_{2} can have colorings by assigning two vertices with different colors, that means $P\left(C_{2}, \lambda\right)=\lambda(\lambda-1)$. The cycle graph C_{3} is drawn by a triangle and C_{3} can have colorings by assigning all three vertices with different colors, that means $P\left(C_{3}, \lambda\right)=\lambda(\lambda-1)(\lambda-2)$.

2. Four proofs of Theorem 2

In this section, we show the formula (2) in four different ways.
2.1. Inductive proof. This inductive proof is widely well-known. A path graph P_{n} is a connected graph in which $n-1$ edges connect n vertices of vertex degree at most 2 , which could be drawn on a single straight line. The chromatic polynomial for path graph P_{n} is easily obtained by coloring all vertices v_{1}, \ldots, v_{n} where v_{i} and v_{i+1} have different colors for $i=1, \ldots, n-1$.

Figure 3. C_{n+1}, P_{n+1} and C_{n}
Lemma 3. For a positive integer $n \geq 1$, the chromatic polynomial for path graph P_{n} is

$$
\begin{equation*}
P\left(P_{n}, \lambda\right)=\lambda(\lambda-1)^{n-1} . \tag{3}
\end{equation*}
$$

We use an induction on the number n of vertices by the deletioncontraction recurrence and the above lemma for path graph: It is already shown that (2) is true for $n \leq 3$ by the example in Section 1. Assume that (2) is true for a positive integer n. Using (1) and (3), we have

$$
\begin{array}{rlrl}
P\left(C_{n+1}, \lambda\right) & =P\left(C_{n+1}-e, \lambda\right)-P\left(C_{n+1} / e, \lambda\right) & & \text { by }(1) \\
& =P\left(P_{n+1}, \lambda\right)-P\left(C_{n}, \lambda\right) & \\
& =\lambda(\lambda-1)^{n}-\left((\lambda-1)^{n}+(-1)^{n}(\lambda-1)\right) & & \text { by }(3) \tag{3}\\
& =(\lambda-1)^{n+1}+(-1)^{n+1}(\lambda-1) . &
\end{array}
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.2. Proof by inclusion-exclusion principle. The inclusion-exclusion principle is a technique of counting the size of the union of finite sets.

Proposition 4 (Inclusion-exclusion principle). Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a finite set U. Then number of elements excluding their union is as follows

$$
\begin{aligned}
\left|\bigcap_{i=1}^{n} \overline{A_{i}}\right| & =\sum_{I \subset[n]}(-1)^{|I|}\left|\bigcap_{i \in I} A_{i}\right| \\
& =|U|-\sum_{i=1}^{n}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\cdots+(-1)^{n}\left|A_{1} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

where \bar{A} is the complement of A in U.

Figure 4. A cycle graph C_{5} and a graph K_{4} with names of colors

Considering every condition to assign different colors to two adjacent vertices, for each edge e, we define a finite sets of arbitrary (including improper) colorings to assign same color to two adjacent vertices by the edge e.

Let A_{i} be a set of colorings such that two vertices v_{i} and v_{i+1} are of same color, where v_{n+1} is regarded as v_{1}. Applying the inclusionexclusion principle, we can write the following

$$
\begin{aligned}
P\left(C_{n}, \lambda\right) & =|U|-\sum_{i=1}^{n}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\cdots+(-1)^{n}\left|A_{1} \cap \cdots \cap A_{n}\right| \\
& =\lambda^{n}-\binom{n}{1} \lambda^{n-1}+\binom{n}{2} \lambda^{n-2}+\cdots+(-1)^{n} \lambda \\
& =(\lambda-1)^{n}-(-1)^{n}+(-1)^{n} \lambda \\
& =(\lambda-1)^{n}+(-1)^{n}(\lambda-1) .
\end{aligned}
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.3. Algebric proof. Let us consider a case of $n=5$ and $\lambda=4$, that is, to assign the vertices of C_{5} in four colors: red, blue, yellow, and green. Also let us consider a complete graph K_{4} with vertex names red, blue, yellow, and green, see Figure 4.

When red-blue-red-yellow-green is assigned in order from the vertex v_{1} to the vertex v_{5} in C_{5}, it is corresponding to a closed walk of length 5 in K_{4} which begins and ends at red, that is, it is red-blue-red-yellow-green-red in K_{4}. By generalizing it, we have a correspondence between

Figure 5. A graph G and its adjacency matrix A
λ-colorings of C_{n} and closed walks of length n in K_{λ}. By this correspondence, it is enough to count the number of closed walks of length n in K_{λ}, instead of the number of λ-colorings of C_{n}.

For a graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix of G is an $n \times n$ square matrix A such that its element $A_{i j}$ is one when there is an edge between two vertices v_{i} and v_{j}, and zero when there is no edge between v_{i} and v_{j}.

The following related to an adjacency matrix is well-known.
Proposition 5. Let A be the adjacency matrix of the graph G on n vertices v_{1}, \ldots, v_{n}. Then the (i, j) th entry of the matrix A^{n} is the number of the walk of length n beginning at v_{i} and ending at v_{j}.

By Proposition 5, we can calculate the number of closed walk of length n in the complete graph K_{λ} : Let A be an adjacency matrix of K_{λ}. Then A is a $\lambda \times \lambda$ matrix as follows

$$
A=\left(a_{i j}\right)=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right),
$$

where $a_{i j}=0$ if $i=j$, and otherwise $a_{i j}=1$. So the number of closed walks of length n in K_{λ} is enumerated by $\operatorname{tr}\left(A^{n}\right)$, which equals the sum of all eigenvalues of A^{n}. Also let all eigenvalues of the matrix A be denoted
by $u_{1}, \ldots, u_{\lambda}$, then all eigenvalues of the matrix A^{n} are $u_{1}^{n}, \ldots, u_{\lambda}^{n}$.

$$
A=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 0 & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
\lambda-1 & 0 & \cdots & 0 & 0 \\
0 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right),
$$

Since the matrix A have λ eigenvalues $u_{1}=\lambda-1$ and $u_{2}=\cdots=u_{\lambda}=$ -1 , we have

$$
\operatorname{tr}\left(A^{n}\right)=\sum_{i=1}^{\lambda} u_{i}^{n}=(\lambda-1)^{n}+\underbrace{(-1)^{n}+\cdots+(-1)^{n}}_{\lambda-1 \text { times }} .
$$

Thus, (2) is true for all positive integers $n \geq 1$.
2.4. Bijective proof. Let X_{n} denote the set of λ-colorings of C_{n} and $[\lambda-1]^{n}$ be the set of n-tuples of positive integers less than λ, where $[\lambda-1]$ means $\{1, \ldots, \lambda-1\}$. We consider a mapping φ from λ-colorings of C_{n} in X_{n} to n-tuples in $[\lambda-1]^{n}$.

A mapping φ from X_{n} to $[\lambda-1]^{n}$. The mapping $\varphi: X_{n} \rightarrow[\lambda-1]^{n}$ is defined as follows: Let ω be a λ-coloring of C_{n} in X_{n}, we write $\omega=$ $\left(\omega_{1}, \ldots, \omega_{n}\right)$ where ω_{i} is the color of v_{i} in C_{n} and it is obvious that $\omega_{i} \neq \omega_{i+1}$ for $1 \leq i \leq \lambda$, where ω_{n+1} is regarded as ω_{1}. An entry ω_{i} is called a cyclic descent of C if $\omega_{i}>\omega_{i+1}$ for $1 \leq i \leq \lambda$. Then we define $\varphi(\omega)=\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with

$$
\sigma_{i}= \begin{cases}\omega_{i}-1, & \text { if } \omega_{i} \text { is a cyclic descent } \\ \omega_{i}, & \text { otherwise }\end{cases}
$$

Given a λ-coloring ω, if $\omega_{i}=\lambda$ then $\omega_{i+1}<\lambda$, so $\omega_{i}=\lambda$ should be a cyclic descent. Thus we have $\sigma_{i}<\lambda$ for all $1 \leq i \leq n$ and $\varphi(\omega)$ belongs to $[\lambda-1]^{n}$.

For example, in a case of $n=9$ and $\lambda=4, \omega=(1,2,1,3,2,3,1,4,2) \in$ X_{9} is given as an example of 4 -colorings of C_{9}. Here $\omega_{2}=2, \omega_{4}=3$, $\omega_{6}=3, \omega_{8}=4$, and $\omega_{9}=2$ are cyclic descents of ω. So we have

$$
\varphi(\omega)=\sigma=(1,1,1,2,2,2,1,3,1) \in[3]^{9} .
$$

A mapping ψ as the inverse of φ. Let Z_{n} be the set of n-tuples $\sigma=$ $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ in $[\lambda-1]^{n}$ with

$$
\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n}
$$

and it is obvious that the size of Z_{n} is $\lambda-1$.
We would like to describe a mapping $\psi:\left([\lambda-1]^{n} \backslash Z_{n}\right) \rightarrow X_{n}$ in order to satisfy $\varphi \circ \psi$ is the identity on $[\lambda-1]^{n} \backslash Z_{n}$ as follows: Given a $\sigma \in[\lambda-1]^{n} \backslash Z_{n}$, we define $\bar{\sigma}=\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{n}\right)$ with

$$
\bar{\sigma}_{i}= \begin{cases}\sigma_{i}+1, & \text { if } \sigma_{i} \text { is a cyclic descent } \\ \sigma_{i}, & \text { otherwise } .\end{cases}
$$

Since $\bar{\sigma}$ may have consecutive same entries, we define $\psi(\sigma)=\omega=$ $\left(\omega_{1}, \ldots, \omega_{n}\right)$ from $\bar{\sigma}$ with $\omega_{i}=\bar{\sigma}_{i}+1$ for any entry $\bar{\sigma}_{i}$ of $\bar{\sigma}$ with a finite positive even integer ℓ satisfying

$$
\bar{\sigma}_{i}=\bar{\sigma}_{i+1}=\cdots=\bar{\sigma}_{i+\ell-1} \neq \bar{\sigma}_{i+\ell}
$$

where $\bar{\sigma}_{n+k}$ is regarded as $\bar{\sigma}_{k}$ for $1 \leq k \leq n$, and $\omega_{i}=\bar{\sigma}_{i}$, otherwise. Thus ω has no consecutive same entries and $1 \leq \omega_{i} \leq \lambda$ for all $1 \leq i \leq n$, so $\psi(\sigma)=\omega$ belongs to X_{n}. Moreover, it is obvious that $\sigma_{i} \leq \omega_{i} \leq \sigma_{i}+1$ for all $1 \leq i \leq n$ and if $\omega_{i}=\sigma_{i}+1$ for some $1 \leq i \leq n$ then ω_{i} is a cyclic descent in ω. Hence $\varphi(\omega)=\sigma$ and $\sigma \in[\lambda-1]^{n} \backslash Z_{n}$ if and only if $\psi(\sigma)=\omega$.

In a previous example, $\sigma=(1,1,1,2,2,2,1,3,1)$ is denoted as an example of 9 -tuples in $[3]^{9}$. Here $\sigma_{6}=2, \sigma_{8}=3$ are cyclic descents of σ and we obtain $\bar{\sigma}=(1,1,1,2,2,3,1,4,1)$. And then there exist only three entries $\bar{\sigma}_{2}, \bar{\sigma}_{4}$, and $\bar{\sigma}_{9}$ in $\bar{\sigma}$ satisfying the following

$$
\begin{array}{ll}
k=2: & \bar{\sigma}_{2}=\bar{\sigma}_{3} \neq \bar{\sigma}_{4} \quad(\ell=2), \\
k=4: & \bar{\sigma}_{4}=\bar{\sigma}_{5} \neq \bar{\sigma}_{6} \quad(\ell=2), \text { and } \\
k=9: & \bar{\sigma}_{9}=\bar{\sigma}_{1}=\bar{\sigma}_{2}=\bar{\sigma}_{3} \neq \bar{\sigma}_{4} \quad(\ell=4),
\end{array}
$$

so we get $\omega_{2}=\bar{\sigma}_{2}+1=2, \omega_{4}=\bar{\sigma}_{4}+1=3, \omega_{9}=\bar{\sigma}_{9}+1=2$, and

$$
\psi(\sigma)=\omega=(1,2,1,3,2,3,1,4,2) \in X_{9} .
$$

Let Y_{n} be the set of λ-colorings ω in X_{n} with $\varphi(\omega) \in Z_{n}$. Since two mapping φ and ψ are bijections between $X_{n} \backslash Y_{n}$ and $[\lambda-1]^{n} \backslash Z_{n}$, the size of the set $X_{n} \backslash Y_{n}$ is same with the size of the $[\lambda-1]^{n} \backslash Z_{n}$, which is equal to $(\lambda-1)^{n}-(\lambda-1)$.

When n is even, for any $1 \leq i \leq \lambda-1$, there exist only two n-tuples in X_{n}
$\omega=(i+1, i, i+1, i, \ldots, i+1, i)$ and $\omega=(i, i+1, i, i+1, \ldots, i, i+1)$
satisfying $\varphi(\omega)=(i, i, \ldots, i) \in Z_{n}$. If n is even, the size of Y_{n} is equal to $2(\lambda-1)$ and we obtain

$$
\begin{align*}
P\left(C_{n}, \lambda\right) & =\left|X_{n}\right|=\left|X_{n} \backslash Y_{n}\right|+\left|Y_{n}\right| \\
& =\left[(\lambda-1)^{n}-(\lambda-1)\right]+2(\lambda-1) . \tag{4}
\end{align*}
$$

When n is odd, there is no n-tuples satisfying $\varphi(\omega) \in Z_{n}$ and the set Y_{n} is empty. If n is odd, we obtain

$$
\begin{align*}
P\left(C_{n}, \lambda\right) & =\left|X_{n}\right|=\left|X_{n} \backslash Y_{n}\right|+\left|Y_{n}\right| \\
& =\left[(\lambda-1)^{n}-(\lambda-1)\right]+0 . \tag{5}
\end{align*}
$$

Therefore, (2) yields from (4) and (5) for all positive integers $n \geq 1$.

Acknowledgments

We thank the anonymous referees for their careful reading of the manuscript and their comments to improve the paper.

References

[1] George D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. of Math. 14 (1-4) (1912/13), 42-46. MR1502436. url: https://doi.org/10.2307/1967597
[2] Ronald C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968), 52-71. MR0224505.
[3] Hassler Whitney, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math. 54 (1) (1932), 150-168. MR1506881.

Jonghyeon Lee
Department of Mathematics
Inha University, Incheon 22212, Korea
E-mail: orie73@naver.com
\section*{Heesung Shin}
Department of Mathematics
Inha University, Incheon 22212, Korea
E-mail: shin@inha.ac.kr

[^0]: Received May 17, 2019. Revised June 14, 2019. Accepted June 17, 2019.
 2010 Mathematics Subject Classification: 05C15, 05C30.
 Key words and phrases: chromatic polynomials, cycle graphs, colorings.

 * Corresponding author.
 \dagger This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2017R1C1B2008269).
 (c) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

