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ON THE PRODUCT OF QUASI-PARTIAL METRIC

SPACES

Razieh Gharibi and Sedigheh Jahedi∗

Abstract. This paper is mainly concerned with the existence and
uniqueness of fixed points of f : Xk −→ X, k ∈ N, where X is
a quasi- partial metric space and mapping f satisfies appropriate
conditions. Results are also supported with relevant examples.

1. Introduction

Banach fixed point theorem [3] is a powerful tool which can be applied
in the study of nonlinear phenomena. After presenting this principle,
many authors have generalized this theorem in different directions, for
example see [4, 6-10, 18-19] In 1965, S. Presic [19], extended Banach
fixed point theorem to operators defined on product of metric spaces.
In recent paper [18], Pacurar proved the convergence of a Presic type
k-step iterative method for a new class of operators f : Xk −→ X,
k ∈ N, satisfying a general Presic type contraction condition on metric
spaces. Another interesting generalization is due to Matthews, extension
of the Banach contraction principle from metric spaces to partial metric
spaces [17]. Since then, several authors have studied fixed point theorems
in partial metric spaces. See [ 2, 5, 11-17, 21] and the references there in.
Huang et al. [13] defined the concept of expanding mapping in the setting
of partial metric spaces and obtained some results for two mappings in
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partial metric spaces. The concept of a quasi-partial-metric space was
introduced by Karapinar et al. [14]. Shahzad and Valero [20], presented a
Nemytskii-Edelstein type fixed point theorem for self mappings in partial
metric spaces.

Theorem 1.1. [20] Let (X, p) be a compact partial metric space. If
f is a mapping from (X, p) into itself which is conjugate continuous and
satisfies

p(f(x), f(y)) < p(x, y)

for all x, y ∈ X with x 6= y, then f has a unique fixed point.

Clearly, by the same method of the proof of Theorem 1.1, one can
show that this theorem also holds for mapping f : Xk −→ X, k ∈ N,
whenever (X, p) is a partial metric space.

Remember that a point x in a nonempty set X is a fixed point of
function f : Xk −→ X, k ∈ N, if and only if it is a fixed point of
F : X −→ X defined by

F (x) = f(x, x, . . . , x)

for all x ∈ X.
In this paper, inspired and motivated by Shahzad and Valero [20],

Huang et al. [13] and Karapinar et al. [14], we consider appropriate con-
ditions for a class of mappings on product of quasi-partial metric spaces
and stablish some fixed point results. In Section 2, some basic defini-
tions and properties which will be used later in the paper are provided.
In Section 3, main results on fixed point of mappings in the setting of
partial metric spaces and product of quasi-partial metric spaces follows
with a detailed proof. In order to certify the validity of the main results,
we shall also includes some examples.

2. Preliminaries

We start by recalling some basic definitions and properties which
will be used in this paper.
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Let X be a nonempty set. A quasi metric on X is a function q :
X ×X → R+ such that for all x, y, z ∈ X :,

(i) q(x, y) = q(y, x) = 0⇔ x = y.

(ii) q(x, y) ≤ q(x, z) + q(z, y).

Each quasi-metric q on X generates a T0-topology τ(q) on X which has
as a base, the family of open q-balls {Bq(x, ε) : x ∈ X, ε > 0}, where
Bq(x, ε) = {y ∈ X : q(x, y) < ε} for all x ∈ X and ε > 0.

Note that, the function q−1 : X × X → R+ defined by q−1(x, y) =
q(y, x), known as conjugate quasi-metric of q, is a quasi-metric and func-
tion qs on X ×X defined by qs(x, y) = max{q(y, x), q(x, y)} is a metric
on X.

Example 2.1. [15] (a) The function du : R × R → R+ given by
du(x, y) = max{y − x, 0}, for all x, y ∈ R, is a quasi-metric on R. The
topology, τ(du), is called upper topology on R and (R, du) is called upper
quasi-metric space.

(b) The quasi-metric space (R, d−1u ) with d−1u (x, y) = max{x − y, 0},
for all x, y ∈ R is called the lower quasi-metric space.

Note that for any x ∈ R and ε > 0, Bdu(x, ε) = (−∞, x + ε) and
Bd−1

u
(x, ε) = (x− ε,∞). Therefore τ(du) 6= τ(d−1u ).

Definition 2.2. [17] A partial metric on a nonempty set X is a
function p : X ×X → R+ such that for all x, y, z ∈ X;
(i) p(x, x) = p(x, y) = p(y, y)⇔ x = y.
(ii) p(x, x) ≤ p(x, y).
(iii) p(x, y) = p(y, x).
(iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X. Clearly, a metric p on a set X is a partial
metric such that p(x, x) = 0 for all x ∈ X. Each partial metric p on
X generates a T0−topology τp on X which has as a base, the family of
open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0. The topological space (X, τp) is first countable.
A sequence {xn}n∈N in a partial metric space (X, p) converges to a point
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x ∈ X if and only if p(x, x) = limn→∞ p(x, xn). A sequence {xn}n∈N
in a partial metric space (X, p) is called a Cauchy sequence if there
exists limn,m→∞ p(xn, xm), and a partial metric space (X, p) is said to be
complete if every Cauchy sequence {xn}n∈N in X converges, with respect
to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Every partial metric p on X, induces the metric ps : X ×X −→ R+

defined by ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X and the
quasi-metric dp : X ×X −→ R+ defined by dp(x, y) = p(x, y) − p(x, x)
for all x, y ∈ X such that τ(p) is finer than τ(ps) and τ(p) = τ(dp) [17].

Example 2.3. Let X = R. Consider the function p : X ×X → R+

given by

p(x, y) =
1

2
(|x− y|+ |x|+ |y|) (x, y ∈ R).

It is easy to see that (X, p) is a partial metric space and ps(x, y) = |x−y|,
for all x, y ∈ R. For x ∈ R and ε > 0, the open balls are as follows,

Bp(x, ε) = (−ε, x+ ε) ⊂ (x− ε, x+ ε) = Bps(x, ε) whenever x > 0,

Bp(x, ε) = (x− ε, ε) ⊂ Bps(x, ε) whenever x < 0,

Bp(0, ε) = (−ε, ε) = Bps(0, ε).

Definition 2.4. [14] A quasi-partial metric on a nonempty set X is
a function qp : X ×X → R+ satisfying
(i) If qp(x, x) = qp(x, y) = qp(y, y), then x = y.
(ii) qp(x, x) ≤ qp(x, y).
(iii) qp(x, x) ≤ qp(y, x).
(iv) qp(x, y) + qp(z, z) ≤ qp(x, z) + qp(z, y) for all x, y, z ∈ X.

A quasi-partial metric space is a pair (X, qp) such that X is a non-
empty set and qp is a quasi-partial metric on X. Every quasi-partial
metric qp on X induces the metric qps : X × X → R+ defined by
qps(x, y) = qp(x, y) + qp(y, x) − qp(x, x) − qp(y, y) for all x, y ∈ X. If
qp(x, y) = qp(y, x) for all x, y ∈ X, then qp is a partial metric on X.

For the quasi-partial metric qp on a nonempty set X, the following
functions are quasi-metrics on X [16],

qqp(x, y) = qp(x, y)− qp(x, x),

q−1qp (x, y) = qqp(y, x) = qp(y, x)− qp(y, y),

qqp(x, y) = qp−1(x, y)− qp−1(x, x) = qp(y, x)− qp(x, x),

qqp
−1(x, y) = qqp(y, x) = qp(x, y)− qp(y, y).
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Similarly, as in the case of partial metrics we can introduce ε-balls of
points to define topologies on X. So for ε > 0, we obtain the following
ε-balls at x ∈ X.

Bqqp(x, ε) = {y ∈ X : qp(x, y)− qp(x, x) < ε},
Bq−1

qp
(x, ε) = {y ∈ X : qp(y, x)− qp(y, y) < ε},

Bqqp(x, ε) = {y ∈ X : qp(y, x)− qp(x, x) < ε},
Bqqp−1(x, ε) = {y ∈ X : qp(x, y)− qp(y, y) < ε}.

In each of the above cases, the collection of all these balls yields a base
for a T0-topology on X, which as usual, we shall denote by τ(qqp), τ(q−1qp ),

τ(qqp) and τ(qqp
−1), respectively.

Example 2.5. [12] Let X = R. Define qp(x, y) = |x− y|+ |x|. Then
qp is a quasi-partial metric on R. We have

qqp(x, y) = |x− y|+ |y| − |x|, Bqqp(x, ε) =

 (− ε
2
, x+ ε

2
), x > 0

(− ε
2
, ε
2
), x = 0

(x− ε
2
, ε
2
), x < 0,

qqp
−1(x, y) = |x− y|+ |x| − |y|, Bqqp−1(x, ε) =

 (x− ε
2
,∞), x > 0

(−∞,∞), x = 0
(−∞, x+ ε

2
), x < 0,

q−1qp (x, y) = |x− y| = qqp(x, y), Bq−1
qp

(x, ε)

= (x− ε, x+ ε)

= Bqqp(x, ε).

We can see that qqp, q
−1
qp , qqp and qqp

−1 are quasi-metrics and Bqqp(x, ε) =

(x− ε, x+ ε) = Bq−1
qp

(x, ε). So the open balls in τ(qqp), τ(q−1qp ) and τ(|.|)
are equal.

Lemma 2.6. [14] For a quasi-partial metric qp on X,

pqp(x, y) =
1

2
[qp(x, y) + qp(y, x)] (x, y ∈ X),

is a partial metric on X.

Lemma 2.7. [14] Let (X, qp) be a quasi-partial metric space, let
(X, pqp) be the corresponding partial metric space, and let (X, dpqp)
be the corresponding metric space. Then the following statements are
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equivalent:
(i) The sequence {xn}n∈N is Cauchy in (X, qp) and (X, qp) is complete.
(ii) The sequence {xn}n∈N is Cauchy in (X, pqp) and (X, pqp) is complete.
(iii) The sequence {xn}n∈N is Cauchy in (X, dqp) and (X, dpqp) is com-
plete. Also,

lim
n→∞

dpqp(x, xn) = 0⇔ pqp(x, x) = lim
n→∞

pqp(x, xn) = lim
n,m→∞

pqp(xn, xm)

⇔ qp(x, x) = lim
n→∞

qp(x, xn) = lim
n,m→∞

qp(xn, xm)

= lim
n→∞

qp(xn, x) = lim
n,m→∞

qp(xm, xn).

We use the following lemma in the proof of main theorems.

Lemma 2.8. [12] Let (X, qp) be a quasi-partial metric space. Then
the following hold:
(A) If qp(x, y) = 0, then x = y.
(B) If x 6= y, then qp(x, y) > 0 and qp(y, x) > 0.

3. Main results

Remember that a function f from a topological space (X, τ) into
(R, τ(|.|)) is upper semicontinuous on (X, τ) if and only if f is continuous
from (X, τ) to (R, τ(du)) where du is upper quasi-metric.
In order to prove our main theorem, we need the following proposition.

Proposition 3.1. If qp is a quasi-partial metric on a nonempty set
X, then qp : (X, τ(qqp))× (X, τ(qqp)) −→ (R+, τ(|.|)) is upper semicon-
tinuous.

Proof. It is enough to show that qp : (X, τ(qqp)) × (X, τ(qqp)) −→
(R+, τ(du)) is continuous. Let {xn}n∈N, {yn}n∈N ⊆ X and x, y ∈ X be
such that limn→∞ qqp(x, xn) = limn→∞ qqp(y, yn) = 0 . So for a given
ε > 0 there exists n0 ∈ N such that qqp(x, xn) < ε

2
and qqp(y, yn) < ε

2
for
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all n ≥ n0. Then, for n ≥ n0 we have

qp(xn, yn)− qp(x, y) ≤ qp(xn, x) + qp(x, yn)− qp(x, x)− qp(x, y)

= qqp(x, xn) + qp(x, yn)− qp(x, y)

<
ε

2
+ qp(x, yn)− qp(x, y)

≤ ε

2
+ qp(x, y) + qp(y, yn)− qp(y, y)− qp(x, y)

=
ε

2
+ qqp(y, yn)

< ε.

Hence du(qp(xn, yn), qp(x, y)) = max{qp(xn, yn) − qp(x, y), 0} < ε for
all n ≥ n0. Therefore, according to the argument of the beginning
of this section qp : (X, τ(qqp)) × (X, τ(qqp)) −→ (R+, τ(|.|)) is upper
semicontinuous.

Clearly, by Proposition 3.1, every partial metric p on a nonempty set
X with the topology arising of the quasi-metric dp is upper semicontin-
uous.

Next example supports Proposition 3.1 and shows that for

qp : (X, τ(qqp))× (X, τ(qqp)) −→ (R+, τ(|.|))(1)

Proposition 3.1 does not hold.

Example 3.2. Let X = R, and qp be the quasi-partial metric which is
introduced in example 2.5. Let {xn}n∈N = {2, 1, 2, 1, · · · } and {yn}n∈N =
{3 + 1

n
}n∈N be two sequences in X. Clearly

lim
n→∞

qqp(3, xn) = lim
n→∞

qqp(3, yn) = 0(2)

and limn→∞ du(qp(x, y), qp(xn, yn)) = 0, but

du(qp(y, x), qp(yn, xn)) =

{
2
n

+ 2, n = 2k
2
n

+ 1, n = 2k + 1.

is not convergent.

Definition 3.3. Let X be a non-empty set and τ1, τ2 be two topolo-
gies on X. The function f : Xk −→ X, k ∈ N, is sequentially (τ1, τ2)-
continuous if {f(xn, xn, . . . , xn)}n∈N converges to f(x, x, . . . , x) in (X, τ2)
whenever {xn}n∈N ⊆ X converges to x in (X, τ1).
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Recall that, every upper semicontinuous function on a compact topo-
logical space attains a maximum value [1].

Theorem 3.4. Let qp be a quasi-partial metric on a nonempty set
X. Suppose that (X, τ(qqp)) is compact and f : Xk −→ X, k ∈ N, is
sequentially (τ(qqp), τ(qqp))-continuous and satisfying

qp(f(x, · · · , x), f(y, · · · , y)) > qp(x, y)(3)

for all x, y ∈ X with f(x, · · · , x) 6= f(y, · · · , y), then f has a unique
fixed point.

Proof. Define ϕ : X → R+ by ϕ(x) = qp(x, f(x, · · · , x)). Using the
compactness of (X, τ(qqp)), Proposition 3.1 and sequentially (τ(qqp), τ(qqp))-
continuity of f implies that the function ϕ attains a maximum value at
some x0 ∈ X, i.e, ϕ(x0) ≥ ϕ(x) for all x ∈ X. If f(x0, · · · , x0) = x0,
then x0 is a fixed point of f , otherwise, we claim that y0 = f(x0, · · · , x0)
is a fixed point of f . Suppose that y0 6= f(y0, · · · , y0). Then by Lemma
2.8 we have qp(y0, f(y0, · · · , y0)) 6= 0 and by (2)

ϕ(y0) = qp(y0, f(y0, · · · , y0))
= qp(f(x0, · · · , x0), f(y0, · · · , y0))
> qp(x0, y0)

= qp(x0, f(x0, · · · , x0)),
a contradiction. Then y0 is a fixed point of f . To prove uniqueness, if w
and z are two distinct fixed points of f , then by Lemma 2.8, qp(z, w) 6= 0
and by (2)

qp(z, w) = qp(f(z, · · · , z), f(w, · · · , w)) > qp(z, w).

So the fixed point of f is unique.

The following example illustrates Theorem 3.4.

Example 3.5. Suppose that X = {0, 1
3
, 1}. Define qp : X×X −→ R+

by

qp(x, y) =

{
2x+ y + 2, x 6= y
1, x = y.

Clearly, qp is a quasi-partial metric on X. Let f : X2 −→ X be a
function defined by

f(x, y) =

{
1
3
, x = 0, y ∈ X

1, x ∈ {1
3
, 1}, y ∈ X.
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Since X is a finite set, (X2, τ(qqp)) and (X2, τ(qqp)) are compact spaces
and f is sequentially (τ(qqp), τ(qqp))-continuous. It easy to check that

qp(f(x, x), f(y, y)) > qp(x, y)

for all x, y ∈ X with f(x, x) 6= f(y, y). Therefore all the conditions of
Theorem 3.4 are satisfied and x = 1 is the unique fixed point of the
function f , i.e., f(1, 1) = 1.

Next example shows that the compactness of the domain of the func-
tion f can not be deleted in Theorem 3.4, in order to guarantee the
existence of the fixed point.

Example 3.6. The function pmax : R+ × R+ → R+ defined by
pmax(x, y) = max{x, y} for all x, y ∈ R+ is a partial metric and so is
a quasi-partial metric on R+ [17]. We have also psmax(x, y) = |y − x|,
qqp(x, y) = qqp(x, y) = dpmax(x, y) for all x, y ∈ R+. Let X = (0, 1). De-
fine f : Xk −→ X, k ∈ N, by f(x1, · · · , xk) =

√
x1, for all x1, · · · , xk ∈

X. Then

p(f(x, · · · , x), f(y, · · · , y)) > p(x, y)

for all x, y ∈ X with f(x, · · · , x) 6= f(y, · · · , y). Also, f : Xk −→ X is
a sequentially (τ(dp), τ(dp))-continuous map. Clearly, (X, τ(dp)) is not
compact and f is fixed point free.

Next, we show that Theorem 3.4 does not yield the uniqueness of fixed
point in general when the contraction condition (2) in the statement of
Theorem 3.4 is omitted.

Example 3.7. Let X = [0, 1]. We can see that

pmax(f(1, . . . , 1), f(x, . . . , x)) = 1 = pmax(1, x),

for all x ∈ X and f(x, . . . , x) = x for x = 0, 1 where pmax and f are as
defined in Example 3.6.

In Theorem 3.4, if we arrange the two topology τ(qqp) and τ(qqp), we
obtain the following result.

Theorem 3.8. Let qp be a quasi-partial metric on a nonempty set
X, k be a positive integer and (X, τ(qqp)) be a compact space. If f :
Xk −→ X is a sequentially (τ(qqp), τ(qqp))−continuous map satisfying

qp(f(x, · · · , x), f(y, · · · , y)) > qp(x, y)
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for all x, y ∈ X with f(x, · · · , x) 6= f(y, · · · , y), then f has a unique
fixed point.

Proof. The procedure of the proof is the same as the proof of Theorem
3.4, when we define the function ϕ : X → R+ by ϕ(x) = qp(f(x, · · · , x), x)
for all x ∈ X.

Example 3.5 is also illustrate Theorem 3.8.

Corollary 3.9. Let (X, p) be a partial metric space and suppose
that (X, τ(dp)) is compact. If f : Xk −→ X, k ∈ N, is a sequentially
(τ(dp), τ(dp))-continuous map satisfying

p(f(x, · · · , x), f(y, · · · , y)) > p(x, y)

for all x, y ∈ X with f(x, · · · , x) 6= f(y, · · · , y), then f has a unique
fixed point.

Proof. The partial metric p is a quasi-partial metric and qp = qp = dp.
Then f satisfies conditions of Theorem 3.4 and Theorem 3.8. Therefore
the desired result is obtained.

By considering k = 1 in Theorem 3.4, we obtain the following result.

Corollary 3.10. Let p be a partial metric on a set X and (X, τ(dp))
be a compact space. If f is a continuous self map on (X, τ(dp)) and there
exists n ∈ N such that

p(fn(x), fn(y)) > p(x, y)

for all x, y ∈ X with x 6= y, then f has a unique fixed point.

Proof. First of all, note that any partial metric p is a quasi-partial
metric, qp = qp = dp is a quasi-metric, and by continuity of f , the self
mapping fn on (X, τ(dp)) is continuous. Then by Theorem 3.4, fn has
a unique fixed point, x0, in X. We have also

fn(f(x0)) = f(fn(x0)) = f(x0).

Hence by uniqueness of the fixed point of fn, we have f(x0) = x0. Then
f has a unique fixed point.
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