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COMMUTATIVE SINGLE POWER CYCLIC

HYPERGROUPS OF ORDER 4 AND PERIOD 2

M. R. Kheradmand and B. Davvaz∗

Abstract. In this paper we enumerate all commutative single power
cyclic hypergroups of order 4 and period 2. Moreover, we prove some
interesting properties regarding cyclic hypergroups.

1. Introduction and basic concepts

The composition of two elements in a group is an element, while the
composition of two elements in a hypergroup is a set. If H is a non-
empty set and ∗ is a mapping from H ×H into the family of non-empty
subsets of H, then (H, ∗) is called a hypergroupoid. A hypergroup is a
hypergroupoid (H, ∗) with the following two conditions: (1) (x∗ y)∗ z =
x∗ (y ∗ z), for every x, y, z ∈ H; (2) x∗H = H ∗x = H, for every x ∈ H.
Note that if A,B are non-empty subsets of H and x ∈ H, then we mean

A ∗B =
⋃
a∈A
b∈B

a ∗ b, x ∗ A = {x} ∗ A and A ∗ x = A ∗ {x}.

If (H, ∗) satisfies only in the first axiom, then it is called a semihy-
pergroup. The concept of hyperstructures introduced by F. Marty in
1934 [15] and applied them to groups, algebraic functions and rational
functions. Cyclic semihypergroups and cyclic hypergroups have been
studied by Al Tahan and Davvaz [1–4], Corsini [7], Corsini and Leore-
anu [8], Davvaz [9], De Salvo and and Freni [10], Freni [11], Konguetsof et
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al. [13], Leoreanu [14], Mirvakili et al. [16], Mousavi et al. [18], Vougiouk-
lis [20,21], and many others. In [19], Novak et al. presented an overview
and motivation of existing approaches to the cyclicity in algebraic hy-
perstructures. Moreover, they related these to EL-hyperstructures, a
broad class of algebraic hyperstructures constructed from (pre)ordered
(semi)groups. For more details about algebraic hyperstructures we refer
the readers to [5–9,12,19,21].

In [4], Al Tahan and Davvaz classified all commutative single power
cyclic hypergroups of order three and period two.

Now, in this paper we classify all commutative single power cyclic
hypergroups of order four and period two. The paper is organized as
follows: After an introduction, in Section 2 we present some basic defi-
nitions concerning hyperstructures that are used throughout the paper.
In Section 3 we present some new properties of cyclic hypergroups and in
Section 4 find all commutative single power cyclic hypergroups of order
four where each of its elements is a generator of period two. In Section
5 we show that some commutative single power cyclic hypergroups of
order four and period two are isomorphic. Throughout this paper we
denote the period of a cyclic hypergroup H by per(H).

An element e ∈ H is called an identity of (H, ∗) if x ∈ x ∗ e ∩ e ∗ x
for all x ∈ H and it is called a scalar identity if x ∗ e = e ∗ x = {x}
for all x ∈ H that is unique. An element x ∈ H is called idempotent if
x∗x = x. The hypergroup (H, ∗) is said to be commutative if x∗y = y∗x
for all x, y ∈ H. A non-empty subset K of H is called subhypergroup, if
(K, ∗) is hypergroup. A canonical hypergroup [17] is a non-empty set H
endowed with a mapping ∗ : H ×H −→ P∗(H), satisfying the following
properties:

(1) x ∗ (y ∗ z) = (x ∗ y) ∗ z for every x, y, z ∈ H,
(2) x ∗ y = y ∗ x for every x, y ∈ H,
(3) there exists e ∈ H such that e ∗ x = x ∗ e = x for every x ∈ H,
(4) for every x ∈ H, there exists a unique element x′ such that e ∈ x∗x′,
(5) z ∈ x ∗ y implies that y ∈ x′ ∗ z and x ∈ z ∗ y′.

A hypergroup (H, ∗) is called total hypergroup if x ∗ y = H for all
x, y ∈ H. A hypergroup (H, ∗) is cyclic if there exists h ∈ H and s ∈ N
such that H = h ∪ h2 ∪ · · ·hs ∪ · · · . If H = h ∪ h2 ∪ · · ·hs then H
is cyclic hypergroup with finite period. Otherwise, H is called cyclic
hypergroup with infinite period. A hypergroup (H, ∗) is called single
power cyclic hypergroup if there exists h ∈ H and s ∈ N such that
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H = h∪h2∪· · ·hs∪· · · and h∪h2∪· · ·hm−1 ⊆ hm for every m ∈ N . Let
(H, ∗) and (H ′, ∗′) be two hypergroups. A function f : (H, ∗) −→ (H ′, ∗′)
is said to be a homomorphism if f(x1∗x2) ⊆ f(x1)∗′f(x2) for all x1, x2 ∈
H. And it is called good homomorphism if f(x1 ∗ x2) = f(x1) ∗′ f(x2).
Two hypergroups are said to be isomorphic if there exists a bijective
good homomorphism between them.

2. Properties of Cyclic Hypergroups

In this section we present some properties of cyclic hypergroups.

Proposition 2.1. [4] Let H be a cyclic hypergroup with generator
h ∈ H. If there exists k ∈ N satisfying hk+1 = hk then per(H) ≤ k.

Proposition 2.2. [4] Let H be a cyclic hypergroup with generator
h ∈ H. If there exist i 6= j ∈ N satisfying hi = hj then per(H) ≤
max{i, j}.

Proposition 2.3. [4] If H is a finite cyclic hypergroup, then it has
a finite period.

In the following example we show that the converse of proposition 2.3
is not always true.

Example 1. For every infinite total hypergroup H we have per(H) =
2. Thus per(H) is finite but H is infinite.

Proposition 2.4. [4] Let H be a cyclic hypergroup. Then per(H) =
1 if and only if H is the trivial hypergroup.

Proposition 2.5. [4] Let H be a cyclic hypergroup of order two.
Then per(H) = 2.

Proposition 2.6. [4] Let H be a cyclic hypergroup of order three.
Then per(H) = 2 or per(H) = 3.

Proposition 2.7. [4] If H is a single power cyclic hypergroup of
order n ≥ 2 then 2 ≤ per(H) ≤ n.

Example 2. Let H = {a, b, c, d} and define (H, ∗) by the following
table.
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∗ a b c d
a a, b, c, d c a, b, c, d c
b c a, b, c, d a, b, c, d c
c a, b, c, d a, b, c, d a, b, c, d a, b, c, d
d c c a, b, c a, b, c, d

Then (H, ∗) is a non commutative single power cyclic hypergroup of
period two. It is clear from the table that (H, ∗) is not commutative,
satisfies the reproduction axiom and is generated by every member of
H. Easy computations show that (H, ∗) is associative.

3. Commutative Single Power Cyclic Hypergroups of Order
Four and Period Two

In this section we find all commutative single power cyclic hyper-
groups of order four and period two where every element is a generator
of period two.

Proposition 3.1. Let H = {a, b, c, d} and ∗ be a commutative hy-
peroperation on H. Then (H, ∗) is associative if the all the following
conditions are satisfied:

(1) a ∗ (a ∗ b) = (a ∗ a) ∗ b,
(2) a ∗ (a ∗ c) = (a ∗ a) ∗ c,
(3) a ∗ (a ∗ d) = (a ∗ a) ∗ d,
(4) a ∗ (b ∗ b) = (a ∗ b) ∗ b,
(5) a ∗ (b ∗ c) = (a ∗ b) ∗ c,
(6) a ∗ (b ∗ d) = (a ∗ b) ∗ d,
(7) a ∗ (c ∗ b) = (a ∗ c) ∗ b,
(8) a ∗ (c ∗ c) = (a ∗ c) ∗ c,
(9) a ∗ (c ∗ d) = (a ∗ c) ∗ d,

(10) a ∗ (d ∗ b) = (a ∗ d) ∗ b,
(11) a ∗ (d ∗ c) = (a ∗ d) ∗ c,
(12) a ∗ (d ∗ d) = (a ∗ d) ∗ d,
(13) b ∗ (a ∗ a) = (b ∗ a) ∗ a,
(14) b ∗ (a ∗ c) = (b ∗ a) ∗ c,
(15) b ∗ (a ∗ d) = (b ∗ a) ∗ d,
(16) b ∗ (b ∗ c) = (b ∗ b) ∗ c,
(17) b ∗ (b ∗ d) = (b ∗ b) ∗ d,
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(18) b ∗ (c ∗ c) = (b ∗ c) ∗ c,
(19) b ∗ (c ∗ d) = (b ∗ c) ∗ d,
(20) b ∗ (d ∗ a) = (b ∗ d) ∗ a,
(21) b ∗ (d ∗ c) = (b ∗ d) ∗ c,
(22) b ∗ (d ∗ d) = (b ∗ d) ∗ d,
(23) c ∗ (c ∗ d) = (c ∗ c) ∗ d,
(24) c ∗ (d ∗ d) = (c ∗ d) ∗ d.

Proof. Since (H, ∗) is commutative, it follows that for every x, y, z ∈
H, we have x∗ (x∗x) = (x∗x)∗x and z ∗ (y ∗z) = (y ∗z)∗z = (z ∗y)∗z.
Having (H, ∗) is commutative implies that b∗(c∗a) = b∗(a∗c) = (a∗c)∗b
and having (a ∗ c) ∗ b = a ∗ (c ∗ b) implies that b ∗ (c ∗ a) = b ∗ (a ∗ c) =
(a ∗ c) ∗ b = a ∗ (c ∗ b) = a ∗ (b ∗ c) = (b ∗ c) ∗ a (using 7).

Having (H, ∗) is commutative implies that c ∗ (a ∗ a) = (a ∗ a) ∗ c =
a ∗ (a ∗ c) by (2). We get now that c ∗ (a ∗ a) = (a ∗ a) ∗ c = a ∗ (a ∗ c) =
(a∗c)∗a = (c∗a)∗a. In a similar manner, we prove that c∗(b∗d) = (c∗b)∗d
(using 19,21), c ∗ (d ∗ a) = (c ∗ d) ∗ a (using 11), c ∗ (b ∗ a) = (c ∗ b) ∗ a
(using 5), d ∗ (c ∗ b) = (d ∗ c) ∗ b (using 19).

Example 3. Let H4 = {a, b, c, d} and define (H4, ∗) by the following
table:

∗ a b c d

a a, b, c, d a, b a, b c, d

b a, b a, b, c, d c, d a, b

c a, b c, d a, b, c, d c, d

d c, d a, b c, d a, b, c, d

It is clear ∗ is commutative, satisfy the reproduction axiom and that
H4 = a2 = b2 = c2 = d2. We show now that H4 is associative by the
using following table:
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a ∗ (a ∗ b) = H (a ∗ a) ∗ b = H
a ∗ (a ∗ c) = H (a ∗ a) ∗ c = H
a ∗ (a ∗ d) = H (a ∗ a) ∗ d = H
a ∗ (b ∗ b) = H (a ∗ b) ∗ b = H
a ∗ (b ∗ c) = H (a ∗ b) ∗ c = H
a ∗ (b ∗ d) = H (a ∗ b) ∗ d = H
a ∗ (c ∗ b) = H (a ∗ c) ∗ b = H
a ∗ (c ∗ c) = H (a ∗ c) ∗ c = H
a ∗ (c ∗ d) = H (a ∗ c) ∗ d = H
a ∗ (d ∗ b) = H (a ∗ d) ∗ b = H
a ∗ (d ∗ c) = H (a ∗ d) ∗ c = H
a ∗ (d ∗ d) = H (a ∗ d) ∗ d = H
b ∗ (a ∗ a) = H (b ∗ a) ∗ a = H
b ∗ (a ∗ c) = H (b ∗ a) ∗ c = H
b ∗ (a ∗ d) = H (b ∗ a) ∗ d = H
b ∗ (b ∗ c) = H (b ∗ b) ∗ c = H
b ∗ (b ∗ d) = H (b ∗ b) ∗ d = H
b ∗ (c ∗ c) = H (b ∗ c) ∗ c = H
b ∗ (c ∗ d) = H (b ∗ c) ∗ d = H
b ∗ (d ∗ a) = H (b ∗ d) ∗ a = H
b ∗ (d ∗ c) = H (b ∗ d) ∗ c = H
b ∗ (d ∗ d) = H (b ∗ d) ∗ d = H
c ∗ (c ∗ d) = H (c ∗ c) ∗ d = H
c ∗ (d ∗ d) = H (c ∗ d) ∗ d = H

Theorem 3.2. There are 183398 commutative single power cyclic
hypergroups of order four and period two.

Proof. Indeed, by Algorithm 1 presented in Appendix and a com-
puter program we can enumerate the commutative single power cyclic
hypergroups of order 4 and period 2.

Example 4. In the following we present some of the commutative
single power cyclic hypergroups of order 4 and period 2:



Commutative Single Power Cyclic Hypergroups of Order 4 and Period 2 427

H1 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b
d c, d a, b a, b a, b, c, d

H2 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c
d c, d a, b a, b, c a, b, c, d

H3 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, d
d c, d a, b a, b, d a, b, c, d

H4 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d c, d
d c, d a, b c, d a, b, c, d

H5 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, c, d
d c, d a, b a, c, d a, b, c, d

H6 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d b, c, d
d c, d a, b b, c, d a, b, c, d

H7 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c, d
d c, d a, b a, b, c, d a, b, c, d

H8 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b
d c, d a, b, c a, b a, b, c, d

H9 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, c
d c, d a, b, c a, b, c a, b, c, d

H10 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, d
d c, d a, b, c a, b, d a, b, c, d

H11 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d c, d
d c, d a, b, c c, d a, b, c, d

H12 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, c, d
d c, d a, b, c a, c, d a, b, c, d

H13 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d b, c, d
d c, d a, b, c b, c, d a, b, c, d

H14 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, c, d
d c, d a, b, c a, b, c, d a, b, c, d
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H15 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b
d c, d a, b, d a, b a, b, c, d

H16 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, c
d c, d a, b, d a, b, c a, b, c, d

H17 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, d
d c, d a, b, d a, b, d a, b, c, d

H18 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d c, d
d c, d a, b, d c, d a, b, c, d

H19 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, c, d
d c, d a, b, d a, c, d a, b, c, d

H20 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d b, c, d
d c, d a, b, d b, c, d a, b, c, d

H21 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, c, d
d c, d a, b, d a, b, c, d a, b, c, d

H22 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, b
d c, d a, b, c, d a, b a, b, c, d

H23 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, b, c
d c, d a, b, c, d a, b, c a, b, c, d

H24 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, b, d
d c, d a, b, c, d a, b, d a, b, c, d

H25 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d c, d
d c, d a, b, c, d c, d a, b, c, d

H26 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, c, d
d c, d a, b, c, d a, c, d a, b, c, d

H27 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d b, c, d
d c, d a, b, c, d b, c, d a, b, c, d

H28 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, b, c, d
d c, d a, b, c, d a, b, c, d a, b, c, d
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H29 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b
d a, c, d a, b a, b a, b, c, d

H30 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c
d a, c, d a, b a, b, c a, b, c, d

H31 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, d
d a, c, d a, b a, b, d a, b, c, d

H32 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d c, d
d a, c, d a, b c, d a, b, c, d

H33 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, c, d
d a, c, d a, b a, c, d a, b, c, d

H34 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d b, c, d
d a, c, d a, b b, c, d a, b, c, d

H35 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c, d
d a, c, d a, b a, b, c, d a, b, c, d

H36 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b
d a, c, d a, b, c a, b a, b, c, d

H37 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, c
d a, c, d a, b, c a, b, c a, b, c, d

H38 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, d
d a, c, d a, b, c a, b, d a, b, c, d

H39 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d c, d
d a, c, d a, b, c c, d a, b, c, d

H40 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, c, d
d a, c, d a, b, c a, c, d a, b, c, d

H41 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d b, c, d
d a, c, d a, b, c b, c, d a, b, c, d

H42 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c
c a, b c, d a, b, c, d a, b, c, d
d a, c, d a, b, c a, b, c, d a, b, c, d
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H43 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b
d a, c, d a, b, d a, b a, b, c, d

H44 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, c
d a, c, d a, b, d a, b, c a, b, c, d

H45 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, d
d a, c, d a, b, d a, b, d a, b, c, d

H46 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d c, d
d a, c, d a, b, d c, d a, b, c, d

H47 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, c, d
d a, c, d a, b, d a, c, d a, b, c, d

H48 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d b, c, d
d a, c, d a, b, d b, c, d a, b, c, d

H49 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d a, b, c, d
d a, c, d a, b, d a, b, c, d a, b, c, d

H50 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b, c, d
c a, b c, d a, b, c, d a, b
d a, c, d a, b, c, d a, b a, b, c, d

Proposition 3.3. Let H = {a, b, c, d} and (H, ∗) be a commutative
single power cyclic hypergroup of period two such that all of its elements
are generators of period two. Then, y 6= x ∗ y = y ∗ x 6= x, for any
x, y ∈ H.

Proof. (a) If a∗b = a then a∗(b∗b) = a∗H = H 6= (a∗b)∗b = a∗b = a
and if a ∗ b = b then a ∗ (a ∗ b) = a ∗ b = b 6= (a ∗ a) ∗ b = H ∗ b = H,

(b) If a ∗ c = c then a ∗ (a ∗ c) = a ∗ c = c 6= (a ∗ a) ∗ c = H ∗ c = H
and if a ∗ c = a then a ∗ (c ∗ c) = a ∗H = H 6= (a ∗ c) ∗ c = a ∗ c = a,

(c) If a ∗ d = a then a ∗ (d ∗ d) = a ∗H = H 6= (a ∗ d) ∗ d = a ∗ d = a
and if a ∗ d = d then a ∗ (a ∗ d) = a ∗ d = d 6= (a ∗ a) ∗ d = H ∗ d = H,

(d) If b ∗ c = b then b ∗ (c ∗ c) = b ∗H = H 6= (b ∗ c) ∗ c = b ∗ c = b and
if b ∗ c = c then b ∗ (b ∗ c) = b ∗ c = c 6= (b ∗ b) ∗ c = H ∗ c = H,

(e) If b ∗ d = b then b ∗ (d ∗ d) = b ∗H = H 6= (b ∗ d) ∗ d = b ∗ d = b
and if b ∗ d = d then b ∗ (b ∗ d) = b ∗ d = d 6= (b ∗ b) ∗ d = H ∗ d = H,

(f) If c ∗ d = c then c ∗ (d ∗ d) = c ∗H = H 6= (c ∗ d) ∗ d = c ∗ d = c
and if c ∗ d = d then d ∗ (c ∗ c) = d ∗H = H 6= (d ∗ c) ∗ c = d ∗ c = d.
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Proposition 3.4. Let H = {a, b, c, d} and (H, ∗) be a commutative
single power cyclic hypergroup of period two such that all of its elements
are generators of period two. Then:

(a) If a ∗ b = c then a ∗ c = b ∗ c = H,
(b) If a ∗ b = d then a ∗ d = b ∗ d = H,
(c) If a ∗ c = b then a ∗ b = c ∗ b = H,
(d) If a ∗ c = d then a ∗ d = c ∗ d = H.
(e) If a ∗ d = b then a ∗ b = d ∗ b = H.
(f) If a ∗ d = c then a ∗ c = d ∗ c = H.
(g) If b ∗ c = d then b ∗ d = c ∗ d = H.
(h) If b ∗ c = a then b ∗ a = c ∗ a = H,
(i) If b ∗ d = c then b ∗ c = d ∗ c = H,
(j) If b ∗ d = a then b ∗ a = d ∗ a = H,
(k) If c ∗ d = a then c ∗ a = d ∗ a = H,
(l) If c ∗ d = b then c ∗ b = d ∗ b = H,

Proof. (a) By hypothesis we have a ∗ b = c. Now since a ∗ (a ∗ b) =
(a∗a)∗b, we obtain a∗c = H. On the other hand since b∗(b∗a) = (b∗b)∗a
we obtain b ∗ c = H,

(b) By hypothesis we have a∗ b = d. Now since a∗ (a∗ b) = (a∗a)∗ b,
we obtain a ∗ d = H. On the other hand since a ∗ (b ∗ b) = (a ∗ b) ∗ b we
obtain b ∗ d = H,

(c) By hypothesis we have a ∗ c = b. Now since a ∗ (c ∗ c) = (a ∗ c) ∗ c,
we obtain b ∗ c = H. On the other hand since c ∗ (a ∗ a) = (c ∗ a) ∗ a we
obtain b ∗ a = H,

(d) By hypothesis we have a∗ c = d. Now since a∗ (a∗ c) = (a∗a)∗ c,
we obtain a ∗ d = H. On the other hand since c ∗ (c ∗ a) = (c ∗ c) ∗ a we
obtain d ∗ c = H.

(e) By hypothesis we have a∗d = b. Now since a∗ (a∗d) = (a∗a)∗d,
we obtain a ∗ b = H. On the other hand since d ∗ (d ∗ a) = (d ∗ d) ∗ a we
obtain d ∗ b = H.

(f) By hypothesis we have a∗d = c. Now since a∗ (a∗d) = (a∗a)∗d,
we obtain a ∗ c = H. On the other hand since a ∗ (d ∗ d) = (a ∗ d) ∗ d we
obtain c ∗ d = H.

(g) By hypothesis we have b ∗ c = d. Now since b ∗ (b ∗ c) = (b ∗ b) ∗ c,
we obtain b ∗ d = H. On the other hand since b ∗ (c ∗ c) = (b ∗ c) ∗ c we
obtain c ∗ d = H.
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(h) By hypothesis we have b ∗ c = a. Now since b ∗ (b ∗ c) = (b ∗ b) ∗ c,
we obtain b ∗ a = H. On the other hand since b ∗ (c ∗ c) = (b ∗ c) ∗ c we
obtain a ∗ c = H.

(i) By hypothesis we have b ∗ d = c. Now since b ∗ (d ∗ d) = (b ∗ d) ∗ d,
we obtain c ∗ d = H. On the other hand since b ∗ (b ∗ d) = (b ∗ b) ∗ d we
obtain b ∗ c = H,

(j) By hypothesis we have b ∗ d = a. Now since b ∗ (d ∗ d) = (b ∗ d) ∗ d,
we obtain a ∗ d = H. On the other hand since d ∗ (b ∗ b) = (d ∗ b) ∗ b we
obtain a ∗ b = H,

(k) By hypothesis we have c∗d = a. Now since c∗ (d∗d) = (c∗d)∗d,
we obtain a ∗ d = H. On the other hand since d ∗ (c ∗ c) = (d ∗ c) ∗ c we
obtain a ∗ c = H,

(l) By hypothesis we have c ∗ d = b. Now since c ∗ (c ∗ d) = (c ∗ c) ∗ d,
we obtain c ∗ b = H. On the other hand since c ∗ (d ∗ d) = (c ∗ d) ∗ d we
obtain b ∗ d = H,

Proposition 3.5. Let H = {a, b, c, d} and (H, ∗) be a commutative
single power cyclic hypergroup of period two such that all of its elements
are generators of period two. Then:

(a) If a ∗ b 6= H then a ∗ c 6= b and b ∗ c 6= a,
(b) If a ∗ c 6= H then a ∗ b 6= c and a ∗ d 6= c,
(c) If b ∗ d 6= H then b ∗ c 6= d and b ∗ a 6= d,
(d) If d ∗ a 6= H then d ∗ c 6= a and d ∗ b 6= a,
(e) If d ∗ a 6= H then d ∗ b 6= a and a ∗ b 6= d,
(f) If d ∗ b 6= H then d ∗ a 6= b and d ∗ c 6= b,

Proof. The proof is similar to the proof of Proposition 3.4.

4. Non-Isomorphic Commutative Single Power Cyclic Hy-
pergroups of Order 4 and Period 2

In order to determine all the non-isomorphic commutative single power
cyclic hypergroups of order 4 and period 2, we use Algorithm 1. Indeed,
the algorithm is written base on the following illustrations.
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Proposition 4.1. H3 and H2 are isomorphic hypergroups.

H3 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, d
d c, d a, b a, b, d a, b, c, d

H2 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c
d c, d a, b a, b, c a, b, c, d

Proof. Define f : H3 −→ H2 by f(a) = b, f(b) = a, f(c) = d and
f(d) = c. Since H3 and H2 are commutative, it is suffices to check the
following:

f(a ∗ a) = f(H) = H f(a) ∗′ f(a) = b ∗′ b = H
f(b ∗ b) = f(H) = H f(b) ∗′ f(b) = a ∗′ a = H
f(c ∗ c) = f(H) = H f(c) ∗′ f(c) = d ∗′ d = H
f(d ∗ d) = f(H) = H f(d) ∗′ f(d) = c ∗′ c = H

f(a ∗ b) = f({a, b}) = {a, b} f(a) ∗′ f(b) = b ∗′ a = {a, b}
f(a ∗ c) = f({a, b}) = {a, b} f(a) ∗′ f(c) = b ∗′ d = {a, b}
f(a ∗ d) = f({c, d}) = {c, d} f(a) ∗′ f(d) = b ∗′ c = {c, d}
f(b ∗ c) = f({c, d}) = {c, d} f(b) ∗′ f(c) = a ∗′ d = {c, d}
f(b ∗ d) = f({a, b}) = {a, b} f(b) ∗′ f(d) = a ∗′ c = {a, b}

f(c ∗ d) = f({a, b, d}) = {a, b, c} f(c) ∗′ f(d) = d ∗′ c = {a, b, c}

Proposition 4.2. H32 and H18 are isomorphic hypergroups.

H32 a b c d
a a, b, c, d a, b a, b a, c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d c, d
d a, c, d a, b c, d a, b, c, d

H18 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b, d
c a, b c, d a, b, c, d c, d
d c, d a, b, d c, d a, b, c, d

Proof. Define f : H32 −→ H18 by f(a) = d, f(b) = c, f(c) = a and
f(d) = b. Since H32 and H18 are commutative, it is suffices to check the
following:
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f(a ∗ a) = f(H) = H f(a) ∗′ f(a) = d ∗′ d = H
f(b ∗ b) = f(H) = H f(b) ∗′ f(b) = c ∗′ c = H
f(c ∗ c) = f(H) = H f(c) ∗′ f(c) = a ∗′ a = H
f(d ∗ d) = f(H) = H f(d) ∗′ f(d) = b ∗′ b = H

f(a ∗ b) = f({a, b}) = {c, d} f(a) ∗′ f(b) = d ∗′ c = {c, d}
f(a ∗ c) = f({a, b}) = {c, d} f(a) ∗′ f(c) = d ∗′ a = {c, d}

f(a ∗ d) = f({a, c, d}) = {a, b, d} f(a) ∗′ f(d) = d ∗′ b = {a, b, d}
f(b ∗ c) = f({c, d}) = {a, b} f(b) ∗′ f(c) = c ∗′ a = {a, b}
f(b ∗ d) = f({a, b}) = {c, d} f(b) ∗′ f(d) = c ∗′ b = {c, d}
f(c ∗ d) = f({c, d}) = {a, b} f(c) ∗′ f(d) = a ∗′ b = {a, b}

Proposition 4.3. H1, H2, H4, H5 and H7 are non-isomorphic hyper-
groups.

H1 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b
d c, d a, b a, b a, b, c, d

H2 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c
d c, d a, b a, b, c a, b, c, d

H4 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d c, d
d c, d a, b c, d a, b, c, d

H5 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, c, d
d c, d a, b a, c, d a, b, c, d

H7 a b c d
a a, b, c, d a, b a, b c, d
b a, b a, b, c, d c, d a, b
c a, b c, d a, b, c, d a, b, c, d
d c, d a, b a, b, c, d a, b, c, d

Theorem 4.4. Among the 183398 commutative single power cyclic
hypergroups of order four and period two, there are 7906 non-isomorph
commutative single power cyclic hypergroups.

Proof. By using Algorithm 1 presented in Appendix and a computer
program.
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5. Appendix

In Algorithm 1, we set H = {a, b, c, d} and M the family of all non-
empty subsets of H. We investigate all hyperoperations on H with
desired properties. In order to do this, we assume that A is a 4 × 4
matrix as the table of hyperoperations on H. Note that the entries of
matrix A are the elements of M . The matrix A must be symmetric and
each entry on the main diameter is equal to H. Then,

AllHyperList:= the list of all A such that A is a hypergroup with
desired properties.

UniqueHyperList:= The list of all desired hypergroups up to iso-
morphism.

At the beginning, we investigate all possible cases to put the elements
of M above the main diameter. Then, we apply Proposition 3.1 to check
the associativity. If all 24 conditions of Proposition 3.1 are satisfied, then
(H,A) is one of the desired hypergroups and we put it inside AllHyper-
List. Afterward, the new A is compared to the elements of AllHyperList
to determine the isomorphic. If A is not isomorphic with any element
of AllHyperList, then we set A inside UniqueHyperList. We repeat the
above process for all cases.

Isomorphism investigation: Let A be a new matrix. We want to check
that A is isomorphic to other matrices or not. Suppose that S4 is the
symmetric group of order 4.We check the isomorphism between A and
every element in AllHyperList. If under one of the elements of S4, we
obtain an isomorphism, then A is not new. In otherwise, A is non-
isomorphic to other matrices in AllHyperList and so we put A inside
UniqueHyperList.

In the following we present the algorithm.

Conclusion.
A hypergroup (H, ∗) is cyclic if there exists h ∈ H and a natural

number s such that H = h∪h2∪ · · ·hs∪ · · · . If H = h∪h2∪ · · ·hs then
H is cyclic hypergroup with finite period. A hypergroup (H, ∗) is single
power cyclic hypergroup if H = h∪h2∪· · ·hs∪· · · and h∪h2∪· · ·hm−1 ⊆
hm for every m. In this paper we enumerated the commutative single
power cyclic hypergroups of order 4 and period 2, continuing the study
published in [4]. Among the 183398 commutative single power cyclic
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Algorithm 1: This algorithm finds the list of hypergroups up to
isomorphism for n = 4.
Algorithm SolveN4()

H ← {1, 2, 3, 4}
.M is the space of all possibility for elements aij:

M ← PowerSet(H) \ {∅}
AllHypersList← []
UniqueHypersList← []
foreach (a12, a13, a14, a23, a24, a34) in M6 do

Set aij = aji for every 1 ≤ j < i ≤ 4 .A is symmetric

Set aii = H for every 1 ≤ i ≤ 4 .elements on the diameter are

H.
.A, a matrix 4 by 4, is the table of operation. It is

symmetric and all elements on the diameter are H.

A← (aij)
.Checking 24 conditions to be A be a table of a hypergroup.

if Check24Conditions(A) then
.Checking that weather A is isomorphic to the previous

founded hypergroups.

if NOT IsRepeated(HypersList,A) then
Add A to UniqueHypersList

end
Add A to AllHypersList

end

end
return UniqueHypersList

Procedure IsRepeated(HypersList,A)
Input : HypersList, a list of hypergroups;

A, a matrix of the action table of a hypergroup.
Output: Returns true, if the hypergroup corresponded to A is isomorphic to a

hypergroup in the list HypersList; Otherwise returns false.
S ← Sym({1, 2, 3, 4}) .S is the symmetric group over {1, 2, 3, 4}.
foreach C = (cij) in HypersList do

foreach f in S do
.Define bf(i)f(j) as the image of cij under permutation f.
Set bf(i)f(j) := f(cij) for every 1 ≤ i, j ≤ 4

B ← (bij) .Note that bf(i)f(j) = {f(x) : x ∈ cij}.
if A = B then

return true
end

end

end
return false
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hypergroups of order four and period two, we obtained that there are
7906 non-isomorph commutative single power cyclic hypergroups.

For future work, we intend to continue our study of cyclicity in hy-
pergroups with other orders and periods.
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