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ALMOST PERIODIC SOLUTIONS OF PERIODIC

SECOND ORDER LINEAR EVOLUTION EQUATIONS

Nguyen Huu Tri, Bui Xuan Dieu, Vu Trong Luong,
and Nguyen Van Minh

Abstract. The paper is concerned with periodic linear evolution
equations of the form x′′(t) = A(t)x(t)+f(t), where A(t) is a family
of (unbounded) linear operators in a Banach space X, strongly and
periodically depending on t, f is an almost (or asymptotic) almost
periodic function. We study conditions for this equation to have
almost periodic solutions on R as well as to have asymptotic almost
periodic solutions on R+. We convert the second order equation
under consideration into a first order equation to use the spectral
theory of functions as well as recent methods of study. We obtain
new conditions that are stated in terms of the spectrum of the mon-
odromy operator associated with the first order equation and the
frequencies of the forcing term f .

1. Introduction

In this paper we first consider the existence and uniqueness of almost
periodic solutions with the same structure of spectrum as f to periodic
second order evolution equations of form

(1.1) x′′(t) = A(t)x(t) + f(t), x ∈ X, t ∈ R,
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where the family of (unbounded) linear operators A(t) depend period-
ically on t and generate an evolution operator, and f is an almost (or
asymptotic) periodic function. Then, we consider the asymptotic al-
most periodic solutions of the equation on the half line R+ when so is
f . There are many works devoted to the asymptotic behavior, and in
particular, the almost periodicity of solutions of first order linear evo-
lution equations. We refer the reader to the monographs [2, 8] and [6]
for more complete accounts of the study. In the finite dimensional case,
second order ordinary differential equations can be converted to a first
order equations easily. However, in the infinite dimensional case this
procedure looks more complicated. For first order periodic evolution
equations, the asymptotic behavior of mild solutions has been studied
in many works, for instance, [1,6,12,15,19]. In these works, the spectral
theory of functions play an important role in understanding the behavior
of solutions. One of the most difficult steps in using this theory is to
estimate the spectrum of a bounded mild solution as the equation under
consideration is not autonomous. We note that the concept of circu-
lar spectrum and the associated transform introduced in [12] appear to
be a useful tool to capture the Beurling spectrum of the solutions, and
thus, its asymptotic behavior. To our best knowledge, there is no similar
study for second order equations (1.1).

In this paper we will go further in the direction of [12] to use the
circular spectrum and its associated transform to estimate the Beurling
spectrum of mild solutions to the second order equation Eq. (1.1). We
assume that the homogeneous equation associated with Eq.(1.1) gen-
erates an evolution operator (see e.g. [4, 5]) and is well-posed. This
assumption allows us to use the ideas of [12] to estimate the spectrum
of a bounded mild solution of Eq.(1.1) in Lemma 3.1. This is the first
step to apply the decomposition procedure method in [16] to prove The-
orem 3.2, an analog of the Massera’s Theorem on the existence of an
almost periodic mild solution if the non-homogeneous equation has a
bounded mild solution on the real line. We then prove Theorem 3.6 on
the asymptotic almost periodicity of bounded mild solutions based. We
give an example of application at the end of the paper to a hyperbolic
partial differential equation that is well posed and generates an evolu-
tion operator. The obtained results in the present paper are new. They
complement the known results for first order evolution equations (see
e.g. [2, 6]).
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2. Preliminaries

2.1. Notation. Throughout the paper we will use the following no-
tations: N,Z,R,C stand for the sets of natural, integer, real, com-
plex numbers, respectively. Γ denotes the unit circle in the complex
plane C. For any complex number z the notation <z stands for its
real part. X will denote a given complex Banach space. Given two Ba-
nach spaces X,Y by L(X,Y) we will denote the space of all bounded
linear operators from X to Y. As usual, σ(T ), ρ(T ), R(λ, T ) are the
notations of the spectrum, resolvent set and resolvent of the opera-
tor T . The notations BC(R,X), BUC(R,X), AP (X) will stand for
the spaces of all X-valued bounded continuous, bounded uniformly con-
tinuous functions on R and its subspace of almost periodic (in Bohr’s
sense) functions, respectively. For functions on the half line we will
use BUC(R+,X), AP (R+,X), AAP (R+,X) to denotes the spaces of all
bounded and uniformly continuous functions, of all almost periodic func-
tions, and of all asymptotic almost periodic functions on R+, respec-
tively.

2.2. Circular Spectrum of Functions on the line R. Below we will
introduce a transform of a function g ∈ BUC(R,X) on the real line that
leads to a concept of spectrum of a function. This spectrum coincides

with the set of eisp(g) (overlining means closure in the complex plane
topology) if in addition g is uniformly continuous, where sp(g) denotes
the Beurling spectrum of g. All results mentioned below on the circular
spectrum of a function could be found in [12].

Let g ∈ BUC(R,X). Consider the complex function Sg(λ) in λ ∈
C\Γ defined as

(2.1) Sg(λ) := R(λ, S)g, λ ∈ C\Γ.

Since S is a translation, this transform is an analytic function in λ ∈
C\Γ.

Definition 2.1. The circular spectrum of g ∈ BUC(R,X) is defined
to be the set of all ξ0 ∈ Γ such that Sg(λ) has no analytic extension
into any neighborhood of ξ0 in the complex plane. This spectrum of g
is denoted by σ(g) and will be called for short the spectrum of g if this
does not cause any confusion. We will denote by ρ(g) the set Γ\σ(g).
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Proposition 2.2. Let {gn}∞n=1 ⊂ BUC(R,X) such that gn → g ∈
BUC(R,X) in the uniform topology on R, and let Λ be a closed subset
of the unit circle. Then the following assertions hold:

i) σ(g) is closed.
ii) If σ(gn) ⊂ Λ for all n ∈ N, then σ(g) ⊂ Λ.
iii) σ(Ag) ⊂ σ(g) for every bounded linear operator A acting in

BUC(R,X) that commutes with S.
iv) If σ(g) = ∅, then g = 0.

Proof. For i), ii) and iv) the proofs are given in [12]. For iii) the proof
is obvious from the definition of the circular spectrum.

Below we will recall the concept of Beurling spectrum of a function.
We denote by F the Fourier transform, i.e.

(2.2) (Ff)(s) :=

∫ +∞

−∞
e−istf(t)dt

(s ∈ R, f ∈ L1(R)). Then the Beurling spectrum of u ∈ BUC(R,X) is
defined to be the following set

sp(u) := {ξ ∈ R : ∀ε > 0 ∃f ∈ L1(R),

suppFf ⊂ (ξ − ε, ξ + ε), f ∗ u 6= 0}

where

f ∗ u(s) :=

∫ +∞

−∞
f(s− t)u(t)dt.

The following result is a consequence of the Weak Spectral Mapping
Theorem that relates the circular spectrum and Beurling spectrum of a
uniformly continuous function.

Corollary 2.3. Let g ∈ BUC(R,X). Then

(2.3) σ(g) = eisp(g).

Next, we recall some concepts and results in [16]. Let us consider the
subspace N ⊂ BUC(R,X) (or AP (X), respectively) consisting of all
functions v ∈ BUC(R,X) (or AP (X), respectively) such that

(2.4) σ(v) ⊂ S1 ∪ S2 ,

where S1, S2 are disjoint closed subsets of the unit circle Γ.
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Lemma 2.4. Under the above notations and assumptions the function
space N can be split into a direct sum N = N1 ⊕N2 such that v ∈ Ni
if and only if σ(v) ⊂ Si for i = 1, 2. Moreover, any bounded linear
operator in BUC(R,X) (or AP (X), respectively), that commutes with
the translation S, leaves invariant N as well as Nj, j = 1, 2.

2.3. Circular spectrum of a function on the half line. Consider
the quotient space BUC(R+,X)/AAP (R+,X) and the induced semi-
group of translations (S̄(t))t≥0. As is well known this semigroup is ex-
tendable to a group of isometries (see [2, 9]) we can define the circular
”quotient spectrum” of a function x(·) ∈ BUC(R+,X) as follows:

Definition 2.5. The circular spectrum of g ∈ BUC(R+,X) with
respect to AAP (R+,X) is defined to be the set of all ξ0 ∈ Γ such that
R(λ, S̄ḡ) has no analytic extension into any neighborhood of ξ0 in the
complex plane. This spectrum of g is denoted by σAAP (g).

Before proceeding we introduce a new notation: let 0 6= z ∈ C such
that z = reiϕ with reals r = |z|, ϕ, and let F (z) be any complex function.
Then, (with s larger than r) we define

lim
λ↓z

F (λ) := lim
s↓r

F (seiϕ).

The proof of the following can be found in [9]

Theorem 2.6. Let g ∈ BUC(R+,X) such that the set σAAP (g) is
countable, and let the following condition hold for each ξ0 ∈ σAAP (g)

(2.5) lim
λ↓ξ0

(λ− ξ0)R(λ, S̄)ḡ = 0.

Then, g ∈ AAP (R+,X).

2.4. Almost periodic functions. A subset E ⊂ R is said to be rela-
tively dense if there exists a number l > 0 (inclusion length) such that
every interval [a, a + l] contains at least one point of E. Let f be a
continuous function on R taking values in a complex Banach space X. f
is said to be almost periodic in the sense of Bohr if to every ε > 0 there
corresponds a relatively dense set T (ε, f) (of ε-periods ) such that

sup
t∈R
‖f(t+ τ)− f(t)‖ ≤ ε, ∀τ ∈ T (ε, f).

If f is almost periodic function, then (approximation theorem [8, Chap.
2]) it can be approximated uniformly on R by a sequence of trigonometric
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polynomials, i.e., a sequence of functions in t ∈ R of the form

(2.6) Pn(t) :=

N(n)∑
k=1

an,ke
iλn,kt, n = 1, 2, ...;λn,k ∈ R, an,k ∈ X, t ∈ R.

Of course, every function which can be approximated by a sequence of
trigonometric polynomials is almost periodic. Specifically, the exponents
of the trigonometric polynomials (i.e., the reals λn,k in (2.6)) can be
chosen from the set of all reals λ (Fourier exponents) such that the
following integrals (Fourier coefficients)

a(λ, f) := lim
T→∞

1

2T

∫ T

−T
f(t)e−iλtdt

are different from 0. As is known, there are at most countably such reals
λ, the set of which will be denoted by σb(f) and called Bohr spectrum

of f . Throughout the paper we will use the relation sp(f) = σb(f).

If g ∈ BUC(R,X) with countable σ(g), then its Beurling spectrum
sp(g) is also countable by Corollary 2.3. Therefore, if X does not con-
tain any space isomorphic to c0 (the space of all numerical sequences
converging to zero), the function g is almost periodic (see e.g. [8]). If X
is convex it does not contain c0.

2.5. Evolution processes associated with a homogeneous linear
evolution equation of second order. Assume that (A(t))t∈R is a
family of (generally, unbounded) linear operators in a Banach space X
with the same domain D such that the map t 7→ A(t)x is continuous for
each x ∈ D.

Definition 2.7. Let (S(t, s))t≥s be a two-parameter family of bounded
operators in a Banach space X. Then, it is called an evolution operator
associated with the second order equation

(2.7) u′′(t) = A(t)u(t), t ∈ R,
if

(D1) The map (t, s) 7→ S(t, s)x is continuously differentiable for every
fixed x ∈ X, and
(a) S(t, t) = 0 for all t ∈ R,
(b) For all t, s ∈ R, if x ∈ X and each x ∈ D, then

∂S(t, s)x

∂t
|t=s = x,

∂S(t, s)x

∂s
|t=s = −x
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(D2) For all t, s ∈ R, if x ∈ D, then S(t, s)x ∈ D, the map (t, s) 7→
S(t, s)x is of class C2, and
(a)

∂2S(t, s)x

∂t2
x = A(t)S(t, s)x;

(b)

∂2S(t, s)x

∂s2
x = S(t, s)A(s)x;

(c)

∂2S(t, s)x

∂s∂t
x|t=s = 0.

(D3) For all t, s ∈ R, if x ∈ D, then ∂S(t,s)
∂t

x ∈ D. Further, there exists
∂3

∂t2∂s
and ∂3

∂s2∂t
such that

(a)

∂3

∂t2∂s
S(t, s)x = A(t)

∂

∂s
S(t, s)x;

and the mapping (t, s) 7→ A(t) ∂
∂s
S(t, s)x is continuous.

(b)

∂3

∂s2∂t
S(t, s)x = A(t)

∂

∂t
S(t, s)x,

Definition 2.8. Eq. (2.7) is said to be well posed if

i) There exists an evolution operator (S(t, s)t≥s) associated with it;

ii) There exists a dense subspace D̃ of X invariant under (S(t, s)t≥s)

such that for every y, z ∈ D̃, s ∈ R, the function u(t) := S(t, s)x
is the unique solution on the interval [s,∞) of the equation with
initial condition u(s) = y, u′(s) = z.

Let (S(t, s)t≥s) be an evolution operator associated with Eq.(2.7). A
differentiable function u on R is said to be a mild solution of Eq.(1.1) if
for all t ≥ s

u(t) = C(t, s)u(s) + S(t, s)u′(s) +

∫ t

s

S(t, ξ)f(ξ)dξ.(2.8)

Let us consider a first order evolution equation

(2.9) u′(t) = B(t)u(t), t ∈ R,
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where A(t) is an (unbounded) linear operator with D := D(A(t)) in-
dependent of t. We say that a two parameter family of bounded linear
operators is an evolution process if it satisfies

i) U(t, t) = I, for all t ∈ R;
ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r;
iii) (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X;
iv) There exists a dense subspace D̃ ⊂ D such that for each x ∈ D̃

the function x(t) := U(t, s)x is the unique solution of Eq. (2.9) on
[s,∞).

Lemma 2.9. Let Eq.(2.7) be well posed. Assume further that (S(t, s)t≥s)
is the evolution operator associated with Eq.(2.7). Then, the family of
operators

U(t, s) :=

[
C(t, s) S(t, s)
∂C(t,s)
∂t

∂S(t,s)
∂t

]
(2.10)

is an evolution process associated with

(2.11)

[dx(t)
dt
dy(t)
dt

]
=

[
0 1

A(t) 0

] [
x(t)
y(t)

]
.

Proof. First,

U(t, t) :=

[
C(t, s)|s=t S(t, s)|s=t
∂C(t,s)
∂t
|s=t ∂S(t,s)

∂t
|s=t

]
=

[
IX 0
0 IX

]
= IX×X.

Second, the map (t, s) 7→ U(t, s)x is continuous because the map (t, s) 7→
S(t, s)x is for every fixed x ∈ X. As the Cauchy Problem (CP) for
Eq.(2.7) has a unique solution

x(t) = C(t, r)y + S(t, s)z

with initial condition x(r) = y ∈ D̃, x′(r) = z ∈ D̃, then the solution
x(t) is the unique solution of (CP) with initial

x(s) = C(s, r)x(r) + S(s, r)x′(r),

x′(s) =
∂C(t, s)

∂t
x(r) +

∂S(t, s)

∂t
x′(r).

This means, since D̃ is dense everywhere in X for all t ≥ s ≥ r

U(t, s)U(s, r) = U(t, r)

Next, let us define the space D̃B := D̃×D̃. By the definition of the well-
posedness of the Eq.(2.7), there exists a unique solution x(·) such that
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x(s) = y, x′(s) = z for any given y, z ∈ D̃. This yields that the function
u(t) := (x(t), x′(t))T is a solution of Eq.(2.11). Note that the uniqueness
of u(·) follows from that of x(·). The lemma’s proof is completed.

Let F (·) be a continuous function on R. A function u(·) on R is said
to be a mild solution to

(2.12) u′(t) = B(t)u(t) + F (t)

if for all t ≥ s,

(2.13) u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)F (ξ)dξ, t ≥ s.

Lemma 2.10. Let Eq.(2.7) be well posed with the associated evolution
operator (S(t, s))t≥s. Then, if x(·) is a mild solution of Eq.(1.1) on R,
then (x(·), x′(·))T is a mild solution of the following equation[

dx(t)
dt
dy(t)
dt

]
=

[
0 1

A(t) 0

] [
x(t)
y(t)

]
+

[
0
f(t)

]
.(2.14)

Conversely, if (x(·), y(·))T is a mild solution of Eq. (2.14), then x(·) is a
mild solution of Eq.(1.1).

Proof. Since

x(t) = C(t, s)x(s) + S(t, s)x′(s) +

∫ t

s

S(t, ξ)f(ξ)dξ

we have

x′(t) =
∂C(t, s)

∂t
x(s) +

∂S(t, s)

∂t
x(s) + S(t, t)f(t) +

∫ t

s

∂S(t, ξ)

∂t
f(ξ)dξ

=
∂C(t, s)

∂t
x(s) +

∂S(t, s)

∂t
x(s) +

∫ t

s

∂S(t, ξ)

∂t
f(ξ)dξ.

Therefore,
(2.15)[

x(t)
x′(t)

]
=

[
C(t, s) S(t, s)
∂C(t,s)
∂t

∂S(t,s)
∂t

] [
x(s)
x′(s)

]
+

∫ t

s

[
C(t, ξ) S(t, ξ)
∂C(t,ξ)
∂t

∂S(t,ξ)
∂t

] [
0

f(ξ)

]
dξ.

That is, if we denote by u(t) := (x(t), x′(t))T , and F (t) := (0, f(t))T ,
then for all t ≥ s

(2.16) u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)F (ξ)dξ.
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Conversely, let (x(·), y(·))T be a mild solution of Eq.(2.14). Then, by
definition,
(2.17)[

x(t)
y(t)

]
=

[
C(t, s) S(t, s)
∂C(t,s)
∂t

∂S(t,s)
∂t

] [
x(s)
y(s)

]
+

∫ t

s

[
C(t, ξ) S(t, ξ)
∂C(t,ξ)
∂t

∂S(t,ξ)
∂t

] [
0

f(ξ)

]
dξ.

Therefore, for all t ≥ s,

x(t) = C(t, s)x(s) + S(t, s)y(s) +

∫ t

s

S(t, ξ)f(ξ)dξ.(2.18)

This yields that x(·) is differentiable, and x′(·) satisfies for all t ≥ s

(2.19) x′(t) =
∂C(t, s)

∂t
x(s) +

∂

∂t
S(t, s)y(s) +

∫ t

s

∂

∂t
S(t, ξ)f(ξ)dξ.

This shows that x′(t) = y(t) for all t, and thus, x(·) is a mild solution of
Eq.(1.1).

Lemma 2.11. Let Eq.(2.7) be well posed, and A(t+ 1) = A(t) for all
t ∈ R. Then, for all t ≥ s the following holds true

(2.20) U(t+ 1, s+ 1) = U(t, s).

Proof. Suppose that y, z ∈ D̃. Set v(t) := C(t, s)y + S(t, s)z, and
w(t) := C(t+ 1, s+ 1)y + S(t+ 1, s+ 1)z. Then, by definition of S(t, s)
and by the 1-periodicity of A(·),

d2v(t)

dt2
= A(t+ 1)v(t) = A(t)v(t), t ≥ s.

and v(s) = y, v′(s) = z. Note that w(·) also satisfies the equation and
the same initial data. Due to the density of D̃ in X and the arbitrary
nature of y, z ∈ D̃, this yields that S(t, s) = S(t + 1, s + 1), C(t, s) =
C(t+ 1, s+ 1), so U(t+ 1, s+ 1) = U(t, s) for all t ≥ s.

Below we denote by P (t) := U(t, t − 1) for all t ∈ R and by P the
operator of multiplication by P (t), and (U(t)t∈R) the translation group
in BUC(R,X), with S := S(1). By the periodicity of (S(t, s)t≥s), the
following lemma is true (see [15]):

Lemma 2.12. Under the notation as above the following assertions
hold:
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i) P (t+ 1) = P (t) for all t; characteristic multipliers are independent
of time, i.e. the nonzero eigenvalues of P (t) coincide with those of
P ,

ii) σ(P (t))\{0} = σ(P )\{0}, i.e., it is independent of t,
iii) If λ ∈ ρ(P ), then the resolvent R(λ, P (t)) is strongly continuous,
iv) If P denotes the operator of multiplication by P (t) in any one of

the function spaces BUC(R+,X) or AP (R+,X), then

(2.21) σ(P)\{0} ⊂ σ(P )\{0}.

3. Almost Periodic Mild Solutions

3.1. Mild solutions and an analog of the Massera’s Theorem.

Lemma 3.1. Let u ∈ BUC(R,X) be a mild solution of the equation
(1.1). Then,

(3.1) σ(u) ⊂ σ(f) ∪ σΓ(P ).

Proof. By Lemma 2.10 the function t 7→ (u(t), u′(t))T is a mild solu-
tion of the first order equation[dx(t)

dt
dy(t)
dt

]
=

[
0 1

A(t) 0

] [
x(t)
y(t)

]
+

[
0
f(t)

]
.(3.2)

That means, for all t ≥ s, w(t) := (u(t), u′(t))T satisfies

(3.3) w(t) = U(t, s)w(s) +

∫ t

s

U(t, ξ)F (ξ)dξ.

In particular, for all t

(3.4) w(t) = U(t, t− 1)w(t− 1) +

∫ t

t−1

U(t, ξ)F (ξ)dξ.

By [12, Lemma 4.1] (3.1) holds because σ(F ) = σ(f) and σ(u) ⊂ σ(w).

As a consequence of Lemma 3.1 we have the following as the main
result of the paper. Before stating the theorem we recall the notation
σΓ(T ) stands for the part of the spectrum of an operator T on the unit
circle.

Theorem 3.2. Let Eq.(2.7) be well posed, and A(t + 1) = A(t) for
all t ∈ R. Further, assume that the following condition are satisfied
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i) Eq.(1.1) has a mild solution u ∈ BUC(R,X) (or in AP (X), respec-
tively)

ii)

(3.5) σΓ(P ) \σ(f) be closed.

Then there exists a mild solution x(·) of Eq.(1.1) in BUC(R,X) (or
AP (X), respectively) such that

(3.6) σ(σ(x(·)) ⊂ σ(f),

that is unique if

(3.7) σΓ(P ) ∩ σ(f) = ∅.

Proof. Set v(t) := (u(t), v′(t))T . Note that σ(u′) ⊂ σ(u), so σ(v) =
σ(u). Let us denote by S1 := σ(f), S2 := σΓ(P ). Then by [16, Theorem
3.1], M = N1 ⊕ N2, where M := {g ∈ BUC(R,X × X)|σ(g) ⊂ σ(u),
N1 := {g ∈ M|σ(u) ⊂ S1}, N2 := {g ∈ M|σ(u) ⊂ S2}. Moreover, the
projections P1, P2 on these subspaces N1, N2 are defined by the Riesz
projections of the restriction S to M corresponding to the spectral sets
S1, S2. As a consequence, these projections commute with any bounded
operator that commutes with the translation S. Further, note that for
every fixed h > 0 the operators of multiplication by U(t, t − h) (as a
1-periodic function of t) commutes with P1, P2 because they commute
with the translation S. It is also noted that in the proof of [12, Lemma

5.3] the operator G mapping F to the function t 7→
∫ t
t−h U(t, ξ)F (ξ)(ξ)dξ

also commutes with S. Therefore, for every fixed h > 0, and all t ∈ R

(3.8) P1v(t) = U(t, t− h)P1v(t− h) +

∫ t

t−h
U(t, ξ)P1F (ξ)dξ.

Since P1F = F this yields w := P1v is a mild solution of Eq.(2.14) with
σ(w) ⊂ σ(u). Let w = (x(·), y(·))T . Then, x(·) is a mild solution of
Eq.(1.1). Obviously σ(x(·)) ⊂ σ(w) ⊂ σ(u).

Next, let x1, x2 be two mild solutions of Eq.(1.1) with σ(x1) ⊂ σ(f)
and σ(x1) ⊂ σ(f). Then the function x(·) := x1(·) − x2(·) is a mild
solution of Eq.(1.1) with f = 0. Hence, σ(x(·)) ⊂ σΓ(P ). Finally, this
shows that σ(x(·)) = ∅, or x(·) = 0.

Corollary 3.3. Let X be a Banach space that does not contain c0.
Further let all assumptions of Theorem 3.2 be satisfied, and the spectrum
σ(f) is countable. Then, if there exists a bounded uniformly continuous
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mild solution to Eq. (1.1), there exists an almost periodic mild solution
w to Eq. (1.1) such that σ(w) ⊂ σ(f).

Proof. By Theorem 3.2 there exists a uniformly continuous mild so-
lution w to Eq. (1.1) such that σ(w) ⊂ σ(f). Next, if σ(w) is countable,
then its Beurling spectrum sp(f) is also countable due to the relation
from the Weak Spectral Mapping Theorem (the overline below means
closure in the complex plane’s topology)

ei·sp(f) = σ(f).

Since X does not contain c0 this yields that w is an almost periodic
function.

Remark 3.4. In his famous paper [10] Massera proved that for a
periodic linear non-homogeneous ODE to have a periodic solution it is
sufficient that it has bounded solution on the positive half line. There
are several extensions and analogs of this theorem to different classes of
evolution equations in [6]. Corollary 3.3 may be seen as an analog for a
second order evolution equations for almost periodic solutions.

3.2. Asymptotical almost periodicity of mild solutions on the
half line. Consider the quotient space Y := BUC(R,X+)/AAP (R+,X).
The translation semigroup (S(t)t≥0) will induce a group of isometries in
Y ( [2], that we will denote by (S̄(t), t ∈ R). For every g ∈ BUC(R+,X)
we will denote by σAAP (g) as the set of all ξ ∈ Γ such that the complex
function

(3.9) h(λ) := R(λ, S̄)ḡ, (|λ| 6= 1)

has no analytic extension to any neighborhood of ξ.

Lemma 3.5. Let u be a bounded uniformly continuous mild solution
of Eq.(1.1) on the half positive line R+. Furthermore, assume that f is
an asymptotically almost periodic function on R+. Then,

(3.10) σAAP (u) ⊂ σ(P ) ∩ Γ.

Proof. By Lemma 2.10 the function v(·) := (u(·), u′(·))T is a mild
solution to the periodic equation (2.14), that is, for all t ≥ s

(3.11) v(t) = U(t, s)v(s) +

∫ t

s

U(t, ξ)F (ξ)dξ,
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where U(t, s) and F (ξ) are defined in the Lemma 2.10. In particular,

(3.12) v(t) = U(t, t− 1)v(t− 1) +

∫ t

t−1

U(t, ξ)F (ξ)dξ.

In other words,

(3.13) v = PSv +GF,

where the operator G maps F to the function defined as (for all t ∈ R+

such that t ≥ 1)

GF (t) :=

∫ t

t−1

U(t, ξ)F (ξ)dξ,

that is also asymptotically almost periodic. Therefore,

S̄v̄ = P̄ v̄,

and thus, for |λ| 6= 1,

(3.14) (λ− S̄)v̄ = (λ− P̄)v̄.

Suppose that λ0 ∈ Γ such that λ0 6∈ σ(P ). Then, λ0 6∈ σ(P̄), so R(λ, P̄)
exists for λ around λ0, and |λ| 6= 1

(3.15) R(λ, S̄)v̄ = R(λ, P̄)v̄.

This shows that R(λ, S̄)v̄ has an analytic extension around λ0, so the
lemma is proved.

As a consequence of this lemma we have the following

Theorem 3.6. Assumed that Eq.(2.7) is well posed and 1-periodic
with σ(P ) ∩ Γ being countable. Further, assume that at every ξ0 ∈
σ(P ) ∩ Γ

(3.16) lim
λ↓ξ0

(λ− ξ0)R(λ,P)g = 0

for all g ∈ BUC(R+,X). Then, every mild solution of Eq. (1.1) on
the positive line R+ is asymptotically almost periodic provided that its
derivative is bounded and uniformly continuous.

Proof. Let u be such a mild solution of Eq.(1.1). Then, the func-
tion v(t) := (u(t), u′(t))T is a bounded and uniformly continuous mild
solution of Eq.(2.14). By Lemma 3.5 and its proof,

σAAP (v) ⊂ σ(P ) ∩ Γ,
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so it is countable. Moreover, by (3.15) R(λ, S̄)v̄ = R(λ, P̄)v̄

(3.17) lim
λ↓ξ0

(λ− ξ0)R(λ, S̄)v̄ = lim
λ↓ξ0

(λ− ξ0)R(λ, P̄ )v̄ = 0.

Therefore, by Theorem 2.6, v ∈ AAP (R+,X). And thus, u is asymptot-
ically almost periodic.

4. Examples and Applications

As an example of a second order evolution equation we consider the
following periodic initial value problem

∂2w(t, ξ)

∂t2
=

∂2w(t, ξ)

∂ξ2
+ b(t)

∂w(t, ξ)

∂ξ
,(4.1)

w(t, 0) = w(t, 2π) = 0, t ∈ R,(4.2)

w(s, ξ) = α(ξ),
∂w(s, ξ)

∂t
= β(ξ), 0 ≤ ξ ≤ 2π.(4.3)

We model this problem with the space X := L2(T,C), where the group T
is defined as R/2πZ. Every 2π-periodic function will be identified with
a function on T. H2(T,C) denotes the Sobolev space of 2π periodic
functions f : R→ C such that f ′′ ∈ L2(T,C). The operator A is defined
as

(4.4) (Au)(ξ) =
d2u(ξ)

dξ2

with domain

D(A) := {u ∈ X : u ∈ H2(T,C), u′(0) = u′(2π = 0}.

B(t) is defined as B(t)u = b(t)u′(t) on H1(T,C). Then, A(t) := A+B(t).
As is shown in [4, Theorem 2.2], there exists an evolution operator S(t, s)
for initial values problem.

x′′(t) = A(t)x(t), t ≥ s(4.5)

x(s) = y,(4.6)

x′(s) = z,(4.7)

where y, z are any elements of X and any s ∈ R. If we assume that b(t)
is periodic with period 1, then the evolution process (U(t, s)t≥s) that is
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associated with the equation[dx(t)
dt
dy(t)
dt

]
=

[
0 1

A+B(t) 0

] [
x(t)
y(t)

]
is 1-periodic. By [4, Corollary 2.2] and [4, Application 2] the Cauchy
Problem (4.5,4.6,4.7) has a unique solution for every (y, z) ∈ Xν × Xν ,
where Xν is the subspace formed by the exponential vectors x such that
‖Ak‖ ≤ cνk for all k ∈ N with norm

‖x‖Xν := sup
k≥0

‖Akx‖
νk

.

This being said, the equation (4.1) with boundary value conditions (4.2)
gives rise to a second order evolution equation that is well posed. There-
fore, for a function f(t, ξ) that is 2π-periodic in ξ and f(t, ·) is an almost
periodic function in t taking values in X we can apply our results pre-
sented above to the equation

∂2w(t, ξ)

∂t2
=

∂2w(t, ξ)

∂ξ2
+ b(t)

∂w(t, ξ)

∂ξ
+ f(t, ξ),(4.8)

w(t, 0) = w(t, 2π) = 0, t ∈ R.(4.9)
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