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SOME NEW ESTIMATES FOR EXPONENTIALLY
(h,m)-CONVEX FUNCTIONS VIA EXTENDED
GENERALIZED FRACTIONAL INTEGRAL OPERATORS

SAIMA RASHID, MUHAMMAD ASLAM NOOR, AND KHALIDA INAYAT
NoOOR

ABSTRACT. In the article, we present several new Hermite-Hadamard
and Hermite-Hadamard-Fejér type inequalities for the exponentially
(h, m)-convex functions via an extended generalized Mittag-Leffler
function. As applications, some variants for certain type of fractional
integral operators are established and some remarkable special cases
of our results are also have been obtained.

1. Introduction

Fractional calculus involving integral or differential operator of frac-
tional order is very close to classical calculus. To see the historical
backgrounds of fractional calculus, one can refer to the papers [15,42].
Integral inequalities that are established by fractional calculus are im-
portant in proving the uniqueness of solutions for fractional differential
equations. They also offer some new estimate for the solutions of bound-
ary value problems for fractional order. Several mathematicians have
investigated expansions and improvements of inequalities which include
fractional calculus, see [7,12,16,19,28,29,40,45]. Several new fractional
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integral operator have been introduced to consider the applications. Re-
cently, several new fractional operators and some of their applications
are presented. These operators are known as left-sided and right-sided
generalized conformable fractional operators. These operators are such
that they contain several operators of fractional calculus. These can
be viewed as the generalization of Katugampola fractional operators,
Hadamard fractional operators, Riemann-Liouville fractional operators,
conformable fractional operators and ordinary derivative and integral
operators. These operators enjoy some basic properties such as linear-
ity, continuity and boundedness.

The fractional differential calculus technique has contributed to the in-
terpretation of physical phenomena as well as a new dimension to the
mathematical approaches for explaining physical phenomena. The order
of the differential equations describing physical phenomena determines
the rate of change in the physical event discussed. At this point, the
fractional order differential has an powerful affect in understanding the
character of the physical phenomenon, although it loses the weaknesses
of the integer order differential equations to explain some physical events.

The classification of functions can be done with various features such
as continuity, convexity, monotony and differentiability. The concept
of convexity in mathematics is known to play an important role in the
development of various branches. Hermite-Hadamard’s inequality is as-
sociated with the concept of convexity. Now we recall the some well
known definition related to convexity as follows:

A mapping ¢ : £ C R — R is called convex, if

YT+ (1 =7)0) <7(1)+ (1 —7)U(1), <1, €K, 7e]0,1].

Studies on inequalities are based on exploring new inequalities and strength-
ening classical approaches. Modern inequality theory continues to be an
active area of mathematical sciences. Inequality theory continues to be
a field that is continuously studied and still active in research and en-
chanting. The following famous inequality among these, the HHI [13]
is one of the most celebrated variants, which can be stated as follows:

Let £ C R be an interval and ¢ : K — R be a convex function.
Then the double inequality

¢(§1+§2> o1 /Qzﬁ(x)dxéw (1.1)
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satisfies for convex mappings and is called as the HHI. This inequal-
ity has long been known as Hadamard’s inequality. This inequality of
Hermite was discovered by Mitrinovic, who he had found earlier than
Hadamard and is known now in the literature as Hermite- Hadamard’s
inequality. The importance of this inequality is due to the fact that it is
equivalent to the definition of convexity under certain conditions. The
inequality (1.1) has been studied by several researchers due to its use-
fulness and applications. See [2—4,6-14,16-18,20,22,25,26,30-39,41,43,
44,46] and the references therein.

On other hand, the minimum of the differentiable convex functions can
be characterized by variational inequalities. These two aspects of the
convexity theory have far reaching applications and have provided pow-
erful tools for studying difficult problems. In recent years, integral in-
equalities are being derived via fractional analysis, which has emerged
as another interesting technique.

To the best of our knowledge, a comprehensive investigation of expo-
nentially convex functions as as an extended Mittag Leffler functions in
the present paper is new one. The class of exponentially convex func-
tions was introduced by Bernstein [5], Dragomir and Gomm [10], Noor
and Noor [23,24] and Rashid et al. [33]. Motivated by these facts, Awan
et al. [2] introduced and investigated another class of convex functions,
which is called exponentially convex function and is significantly dif-
ferent from the class introduced by [5,10]. The growth of research on
big data analysis and deep learning has recently increased the interest
in information theory involving exponentially convex functions. The
smoothness of exponentially convex function is exploited for statistical
learning, sequential prediction and stochastic optimization, see [1,5,27]
and the references therein.

In [33], it is known that a function v is exponentially convex, if and only
if, 1) satisfies the inequality

2
P(s1) ¥(c2)
/ew(x)dx < %. (1.2)

S1

eiﬁ(%) <
G2 — <

The inequality (1.4) is called the Hermite-Hadamard inequality and pro-
vides the upper and lower estimates for the exponential integral.
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Now, we recall and introduce some preliminaries for exponentially
convex functions.

DEFINITION 1.1. [10,23,33]. A positive real-valued function ¢ : K C
R — (0, 00) is said to be exponentially convex on K if the inequality

eV (rs1+(1-7)s2) < Fetlsr) + (1 _ T)ew(Q)

grips for ¢1,¢ € K and 7 € [0, 1].

Exponentially convex functions are used to manipulate for statistical
learning, sequential prediction and stochastic optimization, see [1,27]
and the references therein.

Next, we use the concept of exponentially A-convex function which is
explored by Rashid et al. [34].

DEFINITION 1.2. [34] Let J C R be an interval such that (0,1) C J
and h : J — R be a nonnegative real-valued function. Then ¢ : K — R
is said to be exponentially h-convex if 1 is non-negative such that the
inequality

et (rai+(1-7)s2) < h<7>€w(<1) +h(1— T)ew(cz)

holds for all ¢;,¢ € K and 7 € [0, 1].

DEFINITION 1.3. [25] Let m € (0, 1] and £ C R be an interval. Then
the real-valued function ¢ : L — R is said to be exponentially m-convex
if the inequality

6¢[T§1+m(1—7)§z] < 7_67/)(9) + m(l _ T)ew(Q)
grips for all ¢1,¢, € K and 7 € [0, 1].

Now we introduce the concept of exponentially (%, m)-convex func-
tions as follows:

DEFINITION 1.4. Let J C R be an interval such (0,1) € J and
h:J — R be a nonnegative real-valued function. Then the nonnegative
real-valued function ¢ : K — [0, 00) is said to be exponentially (%, m)-
convex if the inequality

e¥lrsitm(l—7)c] < h(T)ew(cl) + mh(l _ T>e¢(<2)

grips for all ¢, € K and 7 € [0, 1].
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DEFINITION 1.5. [16] Let ¢ € Ly[1, 5. The left and right sided
Riemann-Liouville fractional integrals of order v > 0 with ¢, > 0 are
given by

T

1) = [0 Ok (r>a) 0
and

o) = o (€Ol el 0

oy - F(U) 2)s :
where I'(z) = [ 7% 'e™"dr is the classical Gamma function.

We now give the definition of the extended generalized Mittag-LefHer
functions which is mainly due to [15]:

DEFINITION 1.6. Let v,0,7,v,c € C such that R(v),R(0),R(y) >0
and R(c) > R(y) >0, p>0,7>0and 0 < ¢ <n+ R(r). Then the
extended generalized Mittag-Leffler function E)/“°(t; p) is defined by

v,0,7
’yng“c ﬁp ’7+TLC,C— )( )nC 7" 1
Eu&] P Z %C_ I/n+9) ()m? ( ‘5)

where the generalized beta functlon defined by
1
Biaia) = [ 701 ryete T ar
0
and (¢)oc = I'(c+n(¢)/T'(c) is the Pochhammer symbol.

DEFINITION 1.7. Let ¢ € L[, %], v,0, 7,7, ¢ € C such that R(v), R(0),
R() > 0,R(c) > R(y) >0,p >0n >0 0< < n+Rv).

Then the extended generalized fractional integral operators 67;7]46 v
5], W,6q
and 67;7 G w are defined by
EZ,,g,’j;jgfqﬁ(x; p) = / (x—71)" lEng “(wxz—7)"p)(r)dr  (1.6)
S1

and

€1mee _(x;p) = /Q(T )0 1EZé7fc(w(T =)’ p)Y(r)dr.  (1.7)

1,0,3,w,65
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REMARK 1.1. Equations (1.6) and (1.7) are the generalization of some
fractional integral operators. Indeed, we have

(1) If p = 0, then we get the fractional integral operators defined by
Salim and Faraj in [40];

(2) If 7=mn =1, then we get the fractional integral operators defined
by Rahman et al. in [29];

(3) If p =0 and 3 = n = 1, then then we get the fractional integral
operators defined by Srivastava and Tomovski in [42];

(4) If p=0and y =n = ¢ = 1, then we get the fractional integral
operators defined by Prabhakar in [28];

(5) if p = w = 0, then we get the two sided Riemann-Liouville frac-
tional integrals.

The main motivation of this article is to figure the new HH I and H H-
Fejér type inequalities for the exponentially (A, m)-convex functions by
the use of an extended Mittag-lefHlers function.

2. main results

THEOREM 2.1. Suppose that 0 < ¢; < ¢, m € (0,1] and ¢ : [¢1,G] —
R is a real-valued function such that ¢ € Li[¢,<]. If ¢ is exponen-
tially (h, m)-convex and h € L1[0,1], then the following inequalities for
extended generalized fractional integral operators grips
S +m<
et (572) (57"<C 1> (me; p) (2.1)

v,0,7

) { (e, e¥) (maip) +m (1750, ) (Zip)

v,0,7,w v,0,7,w'm?

(5
< h( ) me — 1) { (me¢(.n2)+e (s2 >) (2052, 0 h) (1: )

—i—(ew + meY §2)) (5’7’"’“ h) (O;p)],

IA
>t

V797J7wl71_

where w' = 7.

(mcz S1)

Proof. Tt follows the exponentially (%, m)-convexity of ¥ that

ew(zmﬂ/) <h (;) [m6¢(m) + elﬂ(y)} . (22)
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Let = (1 —7)% + 76 and y = m(1 — 7)¢; + 7¢;. Then (2.2) leads to

67/)(<2m2+<1) < h(l) |:m67,/;((1—7—)2+7—g2) + ed) (m(1—7)§2+7§1) ) (23)

-2
If we multiply the above inequality by 7'0_1EZ7’9’77’]C’C (wr”; p), we get
1
eMgﬁ%) /TQ_IE;%Q’C(wT”; p)dT (2.4)
0
B(AY [ 01 e (e p\met (AP 47e) 4
< (5) T e (wr”; p)me m T

- / 1 1B (wr; p) et (nOIa) dr} .
i 0

Letting in the above z = (1 — 7)% + 7¢; and y = m(1 — 7)¢ + 741,
then using (1.6) and (1.7), w have

ew(gﬁ%> (67’77’4’8 1) (me; p) (2.5)

v,0,3,w' 6]

1
< ) [(E0s o) mssi) + w0 G50 ) ()]

,0,3,w’ ¢ V0, g,w'm gy m
Again by the exponentially (%, m)-convexity of ¢, we obtain
G (m-matra) | pou(0-nira) (2.6)
< m*A(l — T)ew(%) + mA(7)e? D 4 mh(1 — 7)e¥ ) 4 fi(7)ed )
= k(1) (me¢(§2) + 6¢(<1)) +mh(l —7) (med’(:nl?) + 6¢(§2)).

If we multiply (2.6) by 701 EY¢c (wr”; p) on both sides, then integrat-

1,0,
ing over [0, 1], we have
1 1
[ [ B s ame (0 )iy [ 00 e ]
0 0

1
< ﬁ(*) [m (mew(n%?) + ew(Q))> /Te_lE;’,’g,’f’C(wT"; p)ﬁ(l —T7)dT
0
1

—|—(ew(<1) + mew(<2)) /TQ_IEZ,’(Z’]C’C (wr”; p)h(T)dT:| . (2.7)
0
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By using (1.6) and (1.7), we get
1 ¢ S .
5 [ 9+1 ngw 'm0 ew) (n_}L’ P) + (€Z:g,i;u’m”,cl+ew) (mg2; P):| (2'8>
< h(z)(m@ — gl) { (mew(cl) 4 ¥l ))> (83:377]475/7%@(1;/))

—i—(ew(“) + mew(gg)) (537’;’;:5,,1_71) (0; p)] )

From the above inequality and (2.5), establishing the result (2.1). O

COROLLARY 2.1. If we put p =0 in (2.1), then we have

@d}(w%) (57’n’<’c 1) (m§2)

1/,9,],11}’,(1Jr
1 ¢ e S
< (|5 o) me) + (G e ()]
1
< h(%) [m(mew(:wlz) + ew(Q))) / o— 1Ezg’jcc(w7'”)h(l — 7)dT
0
1
+(e¥t) —i—mew(Q))/ o= lEZgJCC(wTV>h(T)dT:|7
0
where w' = (mg;fg)g.

COROLLARY 2.2. If we put h(1) =7,m =1 and p =0 in (2.1), then
we get

e (932) (rn¢e 1) (o)

V,H,g,w’,cf
(] ) () + (€70 e (1)
N 2
ew(<1)+€w(cz)
S e 1))
w

where w' = 7.
(me2—¢1)
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COROLLARY 2.3. If we put h(t) = 7 and p = 0 in (2.1), then one has

(572 (216 1Y ()

v,0,9,w’ 6]

V) 4 met (%) S
< mit! 5 (63:;7—751?],11}/1‘\’1”@27 1) (_1),

where w' = —%—;
(mez—¢s1)

COROLLARY 2.4. If we put h(t) =7,m =1 and p = w = 0 in (2.1),
then we get

w(ag2) PO+ 170 o) o 10 o) <

e\ 72 ) [qu + Jge } <

e¥(a) o e¥(<2)
2

for 0 > 0.

REMARK 2.1. Letting A(7) = 7 and p = w = 0 in (2.1), then we
attain Theorem 3.1 in [33].

REMARK 2.2. If we put A(7) = 7,m =1,0 =1 and p =w = 0 in
(2.1), then we get Theorem 2.1 in [22].

THEOREM 2.2. Suppose that 0 < ¢; < ¢, m € (0,1] and ¢ : [¢1,G] —
R be a real-valued function such that 1» € Li[s1,<]. If ¢ is an expo-

nentially (h, m)-convex function, then the following inequalities for the
extended generalized fractional integral operators grips

o (352) (e 1)(mesi ) .

v,0,3,w'2v (LT )+

1 ,¢,¢c . »1,6,C .
< ﬁ(§) {(5% e (wﬁew)(m%m + mHl(Ez,;iw,@mu’(q%m)fﬂ) (570)}

1,0,5,w/2V,
) 1
< h(%) (m§22_9 ) [m(me¢(;712) + e¢(<2)> /79_1E3,7;],’]<’c(wTy;p)h<2 g T)dr

0

1
+[ew(<1) + me?/)(cfz)] /TQ_IE;Y:;]”JC’C(U)TV§p)h(%)d7:|,
i)
where w' = (mg;fq)y.

Proof. Since 9 is an exponentially (A, m)-convex function, we obtain

o (=52) < h(%) [me?@ 4 ],
Substituting in the above z = (2;) 1+ and y = m@@ + 561, we

get
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e

o(tp2) o h(%) {ew(%ﬁzzfm) +me¢(%<1+%<2) _ (2.10)
Multiplying (2.10) by 7_971E37,0n,,]§,r:(w7u; p) on both sides and then inte-
grating over [0, 1], we have

1

q +m§
S 2 /7’0 IEW”CC (wr”; p)dr

v,0,7
0

1
T 2—T1
<ily)| [t Ezpe s e o F)ar
0

v,6,9

1
+/ 06— 1E7nCC(wTV;p)ew(?%J“%Q)dT . (2.11)

Putting u = ¢ + (2;;)% and v = m@gg + 361, then using (1.6)
and (1.7), we get

s1t+mso
) g D mi)

0+1 (_vm,¢c ¥y (St
€ e — .
( 0,0,3,w (2m)v (S1EmS2 )~ )(Gie)

< h(%) [(5”’“ — e’)(ms2; p) +m

v,0,5,w2v (L2 +

Again by using the exponentially (%, m)-convexity of 1, we have
€¢(§<1+2%m<2) +mew(’%q+gq) (2.12)
—T) (s2) +mh( ) (s2) +m2h( 5 T)ew(%)

IN

h(%)e“gl) +mh(Z
= [61/’(§1) _}_med’(ﬁ)}h(g) +mh<2_TT) |:mew( ) + e Ple ):| .

Multiplying (2.12) by A(3)7%~ 1E;’9"f’ (wt”; p) on both sides, then in-
tegrating over [0, 1], we have
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1 1
{/ %n,C c wTv;p)ew(§<1+%TTm<z) dr + m/TQ*IEZ”;]”JC’C(wTV;p)ew(%ghL%Q)dT
0

1
< h(%) [[ew(“) —|—m61’b(§2)] /TQ_IEZ”;{’JC’C(U)TD;p)h(%)d’r

1
_ ¢ v 2 — S1
—|—m/r9 LB (wr ;p)h( 5 T>dT(mew(mb) —|—e7’b(<2)):|. (2.13)
0

By using (1.7) and (1.6), we get

1 c
h(3) {(sj,;’,fw,z,, P w)(mcz;p)+me+1(eyyed,w/@m)y,(%)jw)(%;p)} (2.14)
1

1 Y i 7 .
< h(i)(mQTQ)[m(mew(rﬁl) +ed’(<2>>/7_0 IEZ,’en,f’C(wTV;p)ﬁ( 2T)d7—

0
1

+[ew<“)+mew<§2>]/ = 1E7"CC(wT'J;P)h(%)dT}

v,0,7
0

From the inequality (2.14), we get the required inequality (2.9). O

COROLLARY 2.5. If we put p =0 in (2.9), then

sptmen
v (2 2)(53,’3,’55/2&(%)9)(“2)
1 S
<h(3) {(53’;’,’55,@ (atmsz ) © e”)(me2) +m0+1(53,’:,’f,i'(2m)",<‘1§:‘“2 )~ ”’)(i)]

1
0
_ By 9 _
Sh(%)(szg G1) {m(mew(:é)q-ew(”))/ o— 1E35,]¢C(w71,’p ( ’T)
0
1
Jr[ew(gl)erew(Q)]/ 0= 1E:g”fc(w7'u;p)h(%)d7},
0

w

where w' = —%¥——
= (me-w”
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COROLLARY 2.6. If we put h(7) =7,m =1 and p =0 in (2.9), then
we get

(552 (1née. 1) (q)

v,0,3,w’ 6]

1 . .

S G (ORIt [C))
(1) p(s2)

< ﬂ(gﬁh@c +1)(§1)-

2 V797]7wl7§2

COROLLARY 2.7. Letting h(t) = 7,m =1 and p = w = 0 in (2.9),
then we get

0+1
o(2) o PRCO+D) 0w
T T eay [Hsgar € + Lazg, "] (2.15)

THEOREM 2.3. Suppose that m € (0,1], h € L[0,1], 0 < ¢ < ¢,
Y [s1,%) = R and g : [¢1,5] — [0,00) are two real-valued functions
such that 1, g € L1, ] and ¥(x) = (¢ + mey — maz). If ¢ is an expo-
nentially (h, m)-convex function, then we have the following inequalities
for extended generalized fractional integral:

O ) G0 (219

m

1 c S
< A1) ) (i)
—a)? .
< () A o (e 5+ ) (55, (110)

e+ ) (35 ) 0)]
Proof. Since 9 is an exponentially (A, m)-convex, we have
zmty 1 -
() () [me?@ 4 ¥)].

Putting in the above z = (1 — 7)% + 76 and y = m(1 — 7)5 + 76, we
get

o(2m2) h(%) met (-3 re) | p(mi-natra) | (97
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Multiplying (2.17) by 7'9_1EZ,’97’7’J<’C(w7"’;p)eg(TQJ“(l_T)%) on both sides,
then integrating over [0, 1], we have
1

) [t urs ) Rar

v,0,7

0
1

h(_) |:/ 0— IEWUCC(wTV;p>69(7'§2+(1—7')%)m€'¢1((1—7’)%—{-7@2)dT

2 v,0,7

1

b [ e ) |
0

Putting z = 76+ (1 —7)3% in the above, then by the assumption 3 (z) =

P(s1 + mey — mx), we get

TR (mee ) (i) () D(EIEL e ) (Lip).

v,0,9,w'm¥ g, v,0,9,w'm¥ g5 m

Again by using exponentially (%, m)-convexity of 1, we have

ew (m(lfT)<2+T§1) + me’tl)((lfT)%Jrng) (218)
< h(1) (me¢(§2) Te (c1)) +mh(l —7) (m€¢(;12+e"/’(<2)))‘

Multiplying (2.18) by ii(3) 7~ 1EZ;7]< “(wr”; p)ed2T(1=)%) on both sides,
then integrating over [0, 1], we have

1

h(%) [/ o— lEzjgfc(wr”;,0)€g(m+(1_7)%)e¢((1’7)“‘9”“)dT

+m/ 0— 1E'y(;1<, wTv.p)eg(TQHlT)Z{)elﬂ((l_ﬂf&*‘“?)dr}
v,0,7 )

1

< h(%) {(mew(g) + ew(q)) /7’9_1E“”"’<’C (wr”; p)h(T)dr

1
—i—m(mew %) —|—ew(<2 /7'9 1E7"CC (wr”; p)R(1 —T)dT:|.

0
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By using (1.6) and (1.7), we get

h(%)(m + 1)(57’”’4’0 ed}g) (%7 p)

v,0,7,w'm¥ b~
1

—q)? <
< h<§)(tng2m—ogl) {m (m€¢(m12) + ew(cz)) (5ngucjo+h) (1; ,0)

V707]7w717

+(me¢(<2) 4 ew(ﬁ)) (87,77,(70 h) (0; p)‘| .

From the above inequality and (2.18), we get the required inequality
(2.16). O]

COROLLARY 2.8. If we put p =0 in (2.16), then we have

61#(“*%) (6%17,476 eg) (g_l)

v,0,5,w'm” ¢y m

)

) .
< h(%)% |:m(m€¢(m12) + €¢(§2)) (5zg§£0+h>(1>

1 c
< h(ﬁ) (m+1) (53”;’;’1”,“1%2, ewg) (

§_1
m

V707]7w717

T (mets) 4 H) (2se ) (0)] |

By applying Theorem 2.3 similar relations can be established we leave
it for the readers.
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