A STUDY ON THE QUASI TOPOS

Ig Sung Kim

Abstract

Category FRel of fuzzy sets and relations does not form a topos. J. Harding, C. Walker and E. Walker [3] showed that FRel has a tensor product and V. Durov [1] introduced basic definitions related to the notion of vectoid endowed with a tensor product. In this paper, we show that F Rel forms a quasi topos. Also we show that there are quasi power objects in FRel. And by the use of the concepts of FRel and quasi topos, we get the logic operators of FRel. Moreover, we show that FRel forms a vectoid.

1. Introduction

Category FRel of fuzzy sets and relations does not form a topos. J. Harding, C. Walker and E. Walker [3] showed that FRel has a tensor product and V. Durov [1] introduced basic definitions related to the notion of vectoid endowed with a tensor product. In this paper, we introduce the concepts of quasi monomorphism, quasi middle object, quasi exponential, quasi membership morphism, quasi subobject classifier, quasi topos and quasi power object. And we show that quasi middle object, equalizers, quasi exponentials and quasi subobject classifier exist in FRel. So FRel forms a quasi topos. Also we show that quasi power objects exist in FRel. And by the use of the concepts of FRel and quasi topos, we get the logic operators such as negation, conjunction,

Received July 23, 2019. Revised March 3, 2020. Accepted March 4, 2020.
2010 Mathematics Subject Classification: 18B25.
Key words and phrases: category $F R e l$, quasi topos, quasi power object, logic operatator, vectoid.

This paper was supported by Sangji University Research Fund, 2018.
(c) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
disjunction and implication of FRel. Moreover, we show that arbitrary small colimits exist in FRel, the bifunctor is cocontinuous, finite limits exist in FRel, epimorphisms are universally effective in FRel, all equivalence relations in FRel are efficient, generators exist in FRel and FRel is complete. Thus FRel forms a vectoid.

2. Preliminaries

In this section, we state some definitions and properties which will serve as the basic tools for the arguments used to prove our results.

Definition 2.1. An elementary topos is a category \mathcal{E} that satisfies the following conditions:
(T1) \mathcal{E} is finitely complete.
(T2) \mathcal{E} has exponentials.
(T3) \mathcal{E} has a subobject classifier.
Example 2.2. Category Set is a topos. $\{*\}$ is a terminal object, where $\{*\}$ is a singleton set, and $\Omega=\{0,1\}$ together with $\top:\{*\} \rightarrow \Omega$ defined by $T(*)=1$ is a subobject classifier. If we define

$$
\chi_{h}(c)=\left\{\begin{array}{c}
1, \text { if } c=h(d) \\
0, \text { otherwise }
\end{array}\right.
$$

then χ_{h} is the characteristic function of the monomorphism $h: D \rightarrow$ C.

Category FRel of fuzzy sets and relations is a category whose object is $\left(A, P_{A}\right)$ where A is a set and $P_{A}: A \rightarrow I$ is a function with $I=[0,1]$ in Set and morphism from $\left(A, P_{A}\right)$ to $\left(B, P_{B}\right)$ is a relation $r \subseteq A \times B$ satisfying $P_{A}(a) \leqq P_{B}(b)$ for all $(a, b) \in r$ (equivalently $P_{A}(a) \leq P_{B} \circ r(a)$ for all $a \in A$).

Definition 2.3. An object (M, P_{M}) is called a quasi middle object if for any object $\left(A, P_{A}\right)$, there exists a unique morphism $r: A \rightarrow M$ such that $(a, m) \in r$ and $P_{A}(a)=P_{M} \circ r(a)$ for all $a \in A$.

Definition 2.4. A morphism $r:\left(X, P_{X}\right) \rightarrow\left(Y, P_{Y}\right)$ is called a quasi monomorphism if $(x, y) \in r$ for all $x \in X$ and $r:\left(X, P_{X}\right) \rightarrow\left(Y, P_{Y}\right)$ is a monomorphism.

Definition 2.5. A triangular norm is a function $t: I \times I \rightarrow I$, that is order preserving in both coordinates and satisfies the following conditions:
(1) $t(x, y)=t(y, x)$.
(2) $t(x, t(y, z))=t(t(x, y), z)$.
(3) $t(1, x)=x$.

Lemma 2.6. For any triangular norm t on I, there is a tensor product \otimes on FRel defined as follows:

1. $\left(X, P_{X}\right) \otimes\left(Y, P_{Y}\right)=\left(X \times Y, t\left(P_{X}, P_{Y}\right)\right)$ where

$$
t\left(P_{X}, P_{Y}\right)=t \circ\left(P_{X} \times P_{Y}\right)=\min \left\{P_{X}, P_{Y}\right\}
$$

2. $r \otimes s$ is the ordinary product relation $r \times s$.
3. The tensor unit is $\left(\{*\}, P_{\{*\}}\right)$ with $P_{\{*\}}(*)=1$.

Proof. See [3].

Definition 2.7. \mathcal{E} has quasi exponentials if for any objects A and B in \mathcal{E} with tensor products, there exists an object B^{A} and a morphism $e v_{A}: B^{A} \otimes A \rightarrow B$, called a quasi evaluation morphism of A, such that for any Y and $f: Y \otimes A \rightarrow B$ in \mathcal{E}, there exists a unique morphism g such that the following diagram

commutes.

Definition 2.8. If \mathcal{E} is a category with a quasi middle object M, then a quasi subobject classifier is an object C together with $k: M \rightarrow C$ such that for any quasi monomorphism $f: A \rightarrow D$, there exists a unique morphism $q_{f}: D \rightarrow C$ such that the following diagram

is a pullback.
Definition 2.9. A quasi topos is a category \mathcal{E} that satisfies the following conditions:
(QT1) \mathcal{E} has a quasi middle object, equalizers and finite tensor products.
(QT2) \mathcal{E} has quasi exponentials.
$(\mathrm{QT} 3) \mathcal{E}$ has a quasi subobject classifier.
Definition 2.10. A category \mathcal{E} with tensor products is said to have quasi power objects if for any object A there are objects $P(A)$ and ϵ_{A}, and a quasi monomorphism $\epsilon: \epsilon_{A} \rightarrow P(A) \otimes A$ such that for any object B and quasi monomorphism $r: R \rightarrow B \otimes A$ there is a unique morphism $f_{r}: B \rightarrow P(A)$ such that the following diagram

is a pullback.
DEFINITION 2.11. Let \mathcal{E} be a category admitting arbitrary colimits. Denote by $\widehat{\mathcal{E}}=\operatorname{Funct}\left(\mathcal{E}^{o p}\right.$, Sets $)$ the category of presheaves of sets on \mathcal{E}, and by $\widetilde{\mathcal{E}} \subseteq \widehat{\mathcal{E}}$ the full subcategory of $\widehat{\mathcal{E}}$ consisting of continuous presheaves $F: \mathcal{E}^{o p} \rightarrow$ Sets. \mathcal{E} is complete if $\widetilde{\mathcal{E}} \cong \mathcal{E}$.

Definition 2.12. A vectoid is a category \mathcal{E} endowed with an associative and commutative tensor product $\otimes: \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{E}$, admiting a unit and satisfying the following conditions:
(1) Arbitrary small colimits exist in \mathcal{E}.
(2) The bifunctor $\otimes: \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{E}$ is cocontinuous.
(3) Finite limits exist in \mathcal{E}.
(4) Epimorphisms are universally effective and all equivalence relations are efficient in \mathcal{E}.
(5) \mathcal{E} admits a small system of generators.
(6) \mathcal{E} is complete.

3. Quasi Topos

Theorem 3.1. Quasi middle object exists in FRel.
Proof. Let $\left(I, P_{I}\right)$ be an object with $P_{I}(t)=t$ for all $t \in I$. Then for any object $\left(A, P_{A}\right)$, there exists a unique morphism $P_{A}: A \rightarrow I$ such that the following diagram

commutes.
Theorem 3.2. Equalizers exist in FRel.
Proof. For any two objects $\left(A, P_{A}\right),\left(B, P_{B}\right)$ and two morphisms r, s : $A \rightrightarrows B$, let $E=\left\{a \in A \mid\left(a, b_{i}\right) \in r,\left(a, b_{j}\right) \in s \Rightarrow b_{i}=b_{j}\right\}$ with $P_{E}=\left.P_{A}\right|_{E}$ and $v: E \rightarrow A$ be a morphism defined by $(a, a) \in v$. Then we get $r \circ v=s \circ v$. Also we have $P_{A}(a) \geq P_{E}(e)$ for any $(e, a) \in v$. For any $v^{\prime}: E^{\prime} \rightarrow A$ such that $r \circ v^{\prime}=s \circ v^{\prime}$, there exists a morphism $w: E^{\prime} \rightarrow E$ defined by $(t, a) \in w$ where $(t, a) \in v^{\prime}$ and $(a, a) \in v$. So we have $v \circ w=v^{\prime}$. Since $P_{A}(a) \geq P_{E^{\prime}}\left(e^{\prime}\right)$ for any $\left(e^{\prime}, a\right) \in v^{\prime}, P_{E}=\left.P_{A}\right|_{E}$ and $\left(e^{\prime}, e\right) \in w \cap v^{\prime}$ for any $e^{\prime} \in E^{\prime}$, we get $P_{E}(e) \geq P_{E^{\prime}}\left(e^{\prime}\right)$ for any $\left(e^{\prime}, e\right) \in w$. Therefore $\left(\left(E, P_{E}\right), v\right)$ is the equalizer of r and s.

Theorem 3.3. Quasi exponentials exist in FRel.
Proof. Let $\left(A, P_{A}\right)$ and $\left(C, P_{C}\right)$ be two objects, then we have $\left(H, P_{H}\right)$ where $H=C^{A}=\left\{h \subseteq A \times C \mid P_{C}(c) \geq P_{A}(a),(a, c) \in h\right\}$ with $P_{H}: H \rightarrow I$ defined by

$$
P_{H}(h)=\sup \left\{k \in I \mid \min \left\{P_{A}(a), k\right\} \leq P_{C} \circ h(a), a \in A\right\} .
$$

Also we define the quasi evaluation morphism $e v_{A}: H \times A \rightarrow C$ by

$$
e v_{A}(h, a)=h(a),
$$

such that for any Y and $f: Y \times A \rightarrow C$, there exists a unique morphism $g: Y \rightarrow H$ such that the following diagram

commutes.
Clearly $\left\{\left(H, P_{H}\right), e v_{A}\right\}$ is the quasi exponential in FRel.
Theorem 3.4. Quasi subobject classifier exists in FRel. That is, there exists an object $\left(I, P_{J}\right)$ with $P_{J}(z)=1$ for all $z \in I$ together with $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. And for any quasi monomorphism $m: B \rightarrow A$, there exists a unique morphism $q_{m}: A \rightarrow I$ such that for all $a \in A, P_{A}(a) \geq k$ where $(a, k) \in q_{m}$ and the following diagram

is a pullback where $\left(I, P_{I}\right)$ is the quasi middle object.
Proof. Let $q_{m}: A \rightarrow I$ be a morphism defined by

$$
q_{m}(a)=\left\{\begin{aligned}
P_{B}(b), & \text { if }(b, a) \in m \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Then $P_{A}(a) \geq k$ and $q_{m} \circ m=i \circ P_{B}$. Let $n: C \rightarrow A$ be a morphism such that $P_{A} \circ n \geq P_{C}$ and $i \circ P_{C}=q_{m} \circ n$. Then there exists an element $b \in B$ such that $n(c)=m(b)$ where $(c, a) \in n$ and $(b, a) \in m$. So there exists a morphism $n^{\prime}: C \rightarrow B$ defined by $n^{\prime}(c)=b$ such that $m \circ n^{\prime}=n$ and $P_{B} \circ n^{\prime}=P_{C}$. Also $b=n^{\prime}(c)$ implies $m(b)=m\left(n^{\prime}(c)\right)$. By $n(c)=m\left(n^{\prime}(c)\right)$, we get $m \circ n^{\prime}=n$. Thus $P_{C}(c)=q_{m} \circ n(c)=$ $q_{m} \circ m(b)=P_{B}(b)=P_{B} \circ n^{\prime}(c)$. So we have $P_{C}=P_{B} \circ n^{\prime}$. Hence the following diagram

is a pullback. Assume that there exists another q_{m}^{\prime} such that $q_{m}^{\prime} \circ m=$ $i \circ P_{B}=q_{m} \circ m$. This implies $q_{m}^{\prime}(m(b))=q_{m}(m(b))$. Also if $a \notin m(b)$, we get $q_{m}^{\prime}(a)=q_{m}(a)=0$. So $q_{m}=q_{m}^{\prime}$.

Remark. q_{m} is called the quasi membership morphism.

Corollary 3.5. FRel is a quasi topos.

4. Quasi Power Objects

Theorem 4.1. Quasi power objects exist in FRel.
Proof. Let $P(A)=\left\{k \mid k: A \rightarrow I, k(a) \leq P_{A}(a) \forall a \in A\right\}$ with $P_{P(A)}(k)=1$ for all $k \in P(A)$ and $\epsilon_{A}=\{(k, a) \mid k \in P(A), k(a) \neq 0\} \subseteq$ $P(A) \times A$ with $P_{\epsilon_{A}}(k, a)=k(a)$. Also we construct $s: P(A) \times A \rightarrow I$ defined by

$$
s(k, a)=\left\{\begin{array}{r}
k(a), \\
\text { if }(k, a) \in \epsilon_{A} \\
0, \text { otherwise }
\end{array}\right.
$$

Then s is the quasi membership morphism of $m: \epsilon_{A} \rightarrow P(A) \times A$ where $m(k)=k$, so the following diagram

is a pullback, where $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. Let u be the quasi membership morphism of r. Then the following diagram

is a pullback. Also let $f_{r}: B \rightarrow P(A)$ be a morphism defined by

$$
f_{r}(b)(a)=\left\{\begin{array}{r}
v(b, a), \text { if }(b, a) \in R \\
0, \text { otherwise }
\end{array}\right.
$$

Then $s \circ\left(f_{r} \times i d_{A}\right) \circ r=i \circ v$ and $s \circ\left(f_{r} \times i d_{A}\right)=u$. By the property of pullback, there exists a morphism $g_{r}=f_{r} \times\left. i d_{A}\right|_{R}: R \rightarrow \epsilon_{A}$ such that $P_{\epsilon_{A}} \circ g_{r}=v$ and $m \circ g_{r}=\left(f_{r} \times i d_{A}\right) \circ r$. By the pullback lemma, the following diagram

is a pullback. Assume there exists another f_{r}^{\prime} such that $m \circ g_{r}^{\prime}=\left(f_{r}^{\prime} \times\right.$ $\left.i d_{A}\right) \circ r$ where $g_{r}^{\prime}=f_{r}^{\prime} \times\left. i d_{A}\right|_{R}$. Then we have $i \circ P_{\epsilon_{A}} \circ g_{r}^{\prime}=s \circ\left(f_{r}^{\prime} \times i d_{A}\right) \circ r$. Also $g_{r}^{\prime}(b, a)=\left(f_{r}^{\prime}(b), a\right)$ for any $(b, a) \in R, P_{\epsilon_{A}} \circ g_{r}^{\prime}=v$ and $s \circ\left(f_{r}^{\prime} \times i d_{A}\right)=$ u. So $u(b, a)=\left(f_{r}^{\prime}(b), a\right)=\left(f_{r}(b), a\right)$ for any $(b, a) \in R$. Hence $f_{r}^{\prime}=f_{r}$. Also $\left(f_{r}^{\prime}(b), a\right)=0=\left(f_{r}(b), a\right)$ for any $(b, a) \notin R$. Therefore f_{r} is unique.

5. Logic Operations of the Quasi Topos FRel

Theorem 5.1. Negation (\neg) exists in FRel.
Proof. Let $\perp:\left(I, P_{I}\right) \rightarrow\left(I, P_{J}\right)$ be a quasi monomorphism defined by $(u, 1-u) \in \perp$ for all $u \in I$ with $P_{J}(z)=1$ for all $z \in I$ and $P_{I}(t)=t$ for all $t \in I$. Then $\neg:\left(I, P_{J}\right) \rightarrow\left(I, P_{J}\right)$ is the quasi membership mophism of the \perp. That is, the following diagram

is a pullback, where $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. Thus we obtain $\neg:\left(I, P_{J}\right) \rightarrow\left(I, P_{J}\right)$ defined by $(v, 1-v) \in \neg$ for all $v \in I$.

Theorem 5.2. Conjunction (\wedge) exists in FRel.
Proof. Let $h: I \times I \rightarrow I$ be a morphism defined by $((p, q), \min \{p, q\}) \in$ h for all $p, q \in I$ and $i \times i: I \times I \rightarrow I \times I$ be a quasi monomorphism defined by $((a, b),(a, b)) \in i \times i$ for all $a, b \in I$. Then \wedge is the quasi membership mophism of the $i \times i$. That is, the following diagram

is a pullback, where $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. Thus we obtain $\wedge:\left(I \times I, P_{J}\right) \rightarrow\left(I, P_{J}\right)$ defined by $((u, v), \min \{u, v\}) \in \wedge$ for all $u, v \in I$.

Theorem 5.3. Disjunction (V) exists in FRel.
Proof. Let $k: I \times I \rightarrow I$ be a morphism defined by $((p, q), \max \{p, q\}) \in$ k for all $p, q \in I$ and $i \times i: I \times I \rightarrow I \times I$ be a quasi monomorphism defined by $((a, b),(a, b)) \in i \times i$ for all $a, b \in I$. Then \vee is the quasi membership mophism of the $i \times i$. That is, the following diagram

is a pullback, where $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. Thus we obtain $\vee:\left(I \times I, P_{J}\right) \rightarrow\left(I, P_{J}\right)$ defined by $((u, v), \max \{u, v\}) \in \vee$ for all $u, v \in I$.

Theorem 5.4. Implication (\Rightarrow) exists in FRel.
Proof. Let $g: I \times I \rightarrow I$ be a morphism defined by $((p, q), \max \{1-$ $p, q\}) \in g$ for all $p, q \in I$ and $i \times i: I \times I \rightarrow I \times I$ be a quasi monomorphism defined by $((a, b),(a, b)) \in i \times i$ for all $a, b \in I$. Then \Rightarrow is the quasi membership mophism of the $i \times i$. That is, the following diagram

is a pullback, where $i: I \rightarrow I$ defined by $i(j)=j$ for all $j \in I$. Thus we obtain $\Rightarrow:\left(I \times I, P_{J}\right) \rightarrow\left(I, P_{J}\right)$ defined by $((u, v), \max \{1-u, v\}) \in \Rightarrow$ for all $u, v \in I$.

6. Vectoid of the Quasi Topos FRel

Theorem 6.1. Arbitrary small colimits exist in FRel.
Proof. For any $\left(A, P_{A}\right)$, there is a unique morphism $r:\left(\phi, P_{\phi}\right) \rightarrow$ $\left(A, P_{A}\right)$ such that $P_{A} \circ r \geq P_{\phi}$. So the initial object exists in FRel. For any two objects $\left(A, P_{A}\right),\left(B, P_{B}\right)$ and two morphisms $r, s: A \rightrightarrows$ B, let Q be the smallest equivalence relation on B that contains all $(\{r(a)\},\{s(a)\})$. And let $C=B / Q$ with $P_{C}(c)=\max \left\{P_{B}(b)\right\}$ and q be a quotient morphism. Then (q, C) is a coequalizer of a pair r and s. By $q \circ r=q \circ s$ and for any $q^{\prime}: B \rightarrow C^{\prime}$ such that $q^{\prime} \circ r=q^{\prime} \circ s$ with

$$
P_{C^{\prime}}\left(c^{\prime}\right)=\left\{\begin{array}{r}
\max \left\{P_{C}(c)\right\}, \text { if }\left(b, c^{\prime}\right) \in q^{\prime} \text { and }(b, c) \in q \\
1, \text { otherwise }
\end{array}\right.
$$

there exists a unique morphism $u: C \rightarrow C^{\prime}$ such that $u \circ q=q^{\prime}$ since Q is the smallest equivalence relation on B that contains all $(\{r(a)\},\{s(a)\})$. So the coequalizer of a pair r and s exists in FRel. By similar method, multiple coequalizer exists in F Rel. A coproduct of a pair $\left(A, P_{A}\right)$ and $\left(B, P_{B}\right)$ is a triple $\left(\left(A \sqcup B, P_{A \sqcup B}\right), \mu_{A}, \mu_{B}\right)$ where $A \sqcup B$ is the disjoint union of A and B, and two injections $\mu_{A}: A \rightarrow A \sqcup B$ defined by $\mu_{A}(a)=(a, 1)$ and $\mu_{B}: B \rightarrow A \sqcup B$ defined by $\mu_{B}(b)=(b, 2)$ with

$$
\begin{aligned}
& P_{A \cup B}(a, 1)=P_{A}(a), a \in A \\
& P_{A \sqcup B}(b, 2)=P_{B}(b), b \in B .
\end{aligned}
$$

So the coproduct of a pair exists in FRel. By similar method, FRel has coproducts. By the coequalizer and the coproduct, the pushout of s along r where $s: A \rightarrow C$ and $r: A \rightarrow B$ exists in FRel. By similar method, FRel has multiple pushouts.

Theorem 6.2. The bifunctor $\otimes: F R e l \times F R e l \rightarrow F R e l ~ i s ~ c o c o n t i n-~$ uous.

Proof. Given $\left(X, P_{X}\right)$ and for any $\left(A, P_{A}\right)$, there is a unique morphism $r: \phi \rightarrow X \times A$ such that $P_{X \times A} \circ r \geq P_{\phi}$. Also we have $X \times \phi=\phi$. So it preserves the initial object. For any two objects $X \times A, X \times B$ and two morphisms $i d_{X} \times r, i d_{X} \times s: X \times A \rightrightarrows X \times B$, let Q^{\prime} be the smallest equivalence relation on $X \times B$ that contains all $((x,\{r(a)\}),(x,\{s(a)\}))$. And let $C^{\prime}=(X \times B) / Q^{\prime}$ with $P_{C^{\prime}}\left(c^{\prime}\right)=\max \left\{P_{X \times B}(b)\right\}$ and q^{\prime} be a quotient morphism. Then $\left(q^{\prime}, C^{\prime}\right)$ is the coequalizer of a pair $i d_{X} \times r$ and $i d_{X} \times s$. And we have $X \times B / Q \cong(X \times B) / Q^{\prime}$ where Q is the smallest equivalence relation on B that contains all $(\{r(a)\},\{s(a)\})$. So it preserves a coequalizer of a pair. By similar method, it preserves multiple coequalizers. A coproduct of a pair $X \times A$ and $X \times B$ is a triple $\left(X \times A \sqcup X \times B, \mu_{X \times A}, \mu_{X \times B}\right)$ with two injections $\mu_{X \times A}: X \times A \rightarrow$ $X \times A \sqcup X \times B$ and $\mu_{X \times B}: X \times B \rightarrow X \times A \sqcup X \times B$. And we have $X \times(A \sqcup B) \cong(X \times A) \sqcup(X \times B)$. So it preserves a coproduct of a pair. By similar method, it preserves coproducts. By the coequalizer and the coproduct, the pushout of $i d_{X} \times s$ along $i d_{X} \times r$ where $i d_{X} \times s: X \times A \rightarrow$ $X \times C$ and $i d_{X} \times r: X \times A \rightarrow X \times B$ exists in FRel. So it preserves pushouts. By similar method, it preserves multiple pushouts.

Theorem 6.3. Finite limits exist in FRel.

Proof. For any $\left(A, P_{A}\right)$, there is a unique morphism $r:\left(A, P_{A}\right) \rightarrow$ (ϕ, P_{ϕ}) such that $P_{\phi} \circ r \geq P_{A}$. So the terminal object exists in F Rel. For any two objects $\left(A, P_{A}\right),\left(B, P_{B}\right)$ and two morphisms $r, s: A \rightrightarrows B$, let $E=\{a \in A \mid(a, b) \in r,(a, c) \in s \Rightarrow b=c\}$ with $P_{E}(a)=P_{A}(a)$ and $q: E \rightarrow A$ defined by $(a, a) \in q$ for all $a \in E$. Then $r \circ q=s \circ q$. For any $q^{\prime}: E^{\prime} \rightarrow A$ such that $r \circ q^{\prime}=s \circ q^{\prime}$, since E is the largest subobject with $r \circ q=s \circ q$, there is a unique morphism $v: E^{\prime} \rightarrow E$ such that $q \circ v=q^{\prime}$. So the equalizer of a pair r and s exists in $F R e l$. A product of a pair $\left(A, P_{A}\right)$ and $\left(B, P_{B}\right)$ is a triple $\left(\left(A \sqcup B, P_{A \sqcup B}\right), \pi_{A}, \pi_{B}\right)$ where $A \sqcup B$ is the
disjoint union of A and B, and two projections $\pi_{A}: A \sqcup B \rightarrow A$ defined by $\pi_{A}(a, 1)=a$ and $\pi_{B}: A \sqcup B \rightarrow B$ defined by $\pi_{B}(b, 2)=b$ with

$$
\begin{aligned}
& P_{A \cup B}(a, 1)=P_{A}(a), a \in A \\
& P_{A \sqcup B}(b, 2)=P_{B}(b), b \in B .
\end{aligned}
$$

So the product of a pair exists in FRel. By the equalizer and the product, the pullback of s along r where $s: Y \rightarrow C$ and $r: X \rightarrow C$ exists in FRel.

Theorem 6.4. Epimorphisms are universally effective and all equivalence relations are efficient in FRel.

Proof. For any epimorphism $e:\left(X, P_{X}\right) \rightarrow\left(Y, P_{Y}\right)$, there is a kernel pair (p, q) of e where $B=\{(a, b) \mid(a, y),(b, y) \in e\}$ and $p, q: B \rightrightarrows X$ defined by $((a, b), a) \in p$ and $((a, b), b) \in q$. That is, the following diagram

is a pullback. If there is a morphism $s: X \rightarrow Z$ such that $s \circ p=s \circ q$, since Y is the largest object with $e \circ p=e \circ q$, there is a unique morphism $k: Y \rightarrow Z$ such that $k \circ e=s$. So the epimorphism $e:\left(X, P_{X}\right) \rightarrow\left(Y, P_{Y}\right)$ is universally effective.

For any $\left(X, P_{X}\right)$ and an equivalence relation $r \subseteq X \times X$, there is a fibered product $X \times_{X / r} X$ such that the following diagram

is a pullback. So for two morphisms $\pi_{1}^{\prime}, \pi_{2}^{\prime}: r \rightrightarrows X$ such that $h \circ \pi_{1}^{\prime}=$ $h \circ \pi_{2}^{\prime}$, there is a morphism $\varphi: r \rightarrow X \times_{X / r} X$ such that $\pi_{1} \circ \varphi=\pi_{1}^{\prime}$ and $\pi_{2} \circ \varphi=\pi_{2}^{\prime}$ where $\varphi(a, b)=\left(\varphi_{1}(a), \varphi_{2}(b)\right)$. Thus $\pi_{1} \circ \varphi(a, b)=$ $\pi_{1}\left(\varphi_{1}(a), \varphi_{2}(b)\right)=\varphi_{1}(a)$ and $\pi_{1}^{\prime}(a, b)=a$. So we get $\varphi_{1}(a)=a$ and $\varphi_{2}(b)=b$. Therefore $r=X \times_{X / r} X$.

Theorem 6.5. FRel admits a small system of generators.
Proof. For any $\left(A, P_{A}\right)$ and $\left(B, P_{B}\right)$, let $r \neq s: A \rightrightarrows B$. Then there is an element $a \in A$ such that $(a, b) \in r$ and $(a, c) \in s$. We construct $X=\left(\{*\}, P_{\{*\}}\right)$ with $P_{\{*\}}(*)=\min \left\{P_{A}(a)\right\}$ for all $a \in A$ and $q: X \rightarrow A$ defined by $(*, a) \in q$. Then $r \circ q \neq s \circ q$.

Theorem 6.6. FRel is complete.
Proof. For any $G \in o b(\widetilde{F R e l})$, since $F R e l$ is cocomplete and G is representable, G has a left adjoint F. So for any $K \in o b(F R e l)$, there is an object $F \circ G(K)$ such that $F \circ G(K) \in o b(F$ Rel $)$. Since $F R e l \subseteq \widetilde{F R e l}$, we have $F \operatorname{Rel} \cong \widetilde{F R e l}$.

Corollary 6.7. FRel is a vectoid.

References

[1] V. Durov, Classifying Vectoid and Operad Kinds, Proceedings of the Steklov Institude of Math 2011, V. 273, pp. 48-63.
[2] R. Goldblatt, Topoi, North-Holland, 1984.
[3] J. Harding, C. Walker and E. Walker, Categories with fuzzy sets and relations, Fuzzy Sets and Systems (2013), 1-17.
[4] P. T. Johnstone, Topos Theory, Academic Press, N. Y., 1977.
[5] X. Yuan, Comparisons between Category Fuz and Category Set, J. of fuzzy Math. 5 (4) (1997).
[6] X. Yuan and E. S. Lee, Category Fuz, Wtopos and Category FuzFuz, J. of Math. Anal. and Appl. 201 (1996), 489-501.
[7] X. Yuan, H. Li and E. S. Lee, Categories of fuzzy sets and weak topos, Fuzzy Sets and Systems 127 (2002), 291-297.

Ig Sung Kim

Department of Data Information
Sangji University
Wonju, 220-702, Korea
E-mail: iskim@sangji.ac.kr

