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A STUDY ON THE QUASI TOPOS

I¢ SunGg Kim

ABSTRACT. Category FRel of fuzzy sets and relations does not form
a topos. J. Harding, C. Walker and E. Walker [3] showed that FRel
has a tensor product and V. Durov [1] introduced basic definitions
related to the notion of vectoid endowed with a tensor product. In
this paper, we show that FRel forms a quasi topos. Also we show
that there are quasi power objects in FRel. And by the use of the
concepts of FRel and quasi topos, we get the logic operators of FRel.
Moreover, we show that FRel forms a vectoid.

1. Introduction

Category F'Rel of fuzzy sets and relations does not form a topos. J.
Harding, C. Walker and E. Walker [3] showed that FRel has a tensor
product and V. Durov [1] introduced basic definitions related to the
notion of vectoid endowed with a tensor product. In this paper, we
introduce the concepts of quasi monomorphism, quasi middle object,
quasi exponential, quasi membership morphism, quasi subobject classi-
fier, quasi topos and quasi power object. And we show that quasi middle
object, equalizers, quasi exponentials and quasi subobject classifier ex-
ist in FRel. So FRel forms a quasi topos. Also we show that quasi
power objects exist in FRel. And by the use of the concepts of FRel and
quasi topos, we get the logic operators such as negation, conjunction,
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disjunction and implication of FRel. Moreover, we show that arbitrary
small colimits exist in FRel, the bifunctor is cocontinuous, finite limits
exist in F'Rel, epimorphisms are universally effective in FRel, all equiv-
alence relations in F'Rel are efficient, generators exist in FRel and FRel
is complete. Thus FRel forms a vectoid.

2. Preliminaries

In this section, we state some definitions and properties which will
serve as the basic tools for the arguments used to prove our results.

DEFINITION 2.1. An elementary topos is a category & that satisfies
the following conditions:

(T1) & is finitely complete.

(T2) &€ has exponentials.

(T3) &€ has a subobject classifier.

EXAMPLE 2.2. Category Set is a topos. {*} is a terminal object,
where {x} is a singleton set, and 2 = {0, 1} together with T : {x} — Q
defined by T(x) = 1 is a subobject classifier. If we define

1, if ¢ = h(d)
0, otherwise

Xn(c) = {

then yy, is the characteristic function of the monomorphism h : D —

C.

Category FRel of fuzzy sets and relations is a category whose object
is (A, P4) where A is a set and P4 : A — [ is a function with I = [0, 1]
in Set and morphism from (A, P4) to (B, Pg) is a relation r C A x B
satisfying Pa(a) < Pp(b) for all (a,b) € r (equivalently P4(a) < Pgor(a)
for all @ € A).

DEFINITION 2.3. An object (M, Py) is called a quasi middle object
if for any object (A, Pa), there exists a unique morphism r : A — M
such that (a,m) € r and Py(a) = Py or(a) for all a € A.

DEFINITION 2.4. A morphism r : (X, Px) — (Y, Py) is called a quasi
monomorphism if (z,y) € r for all z € X and r : (X, Px) — (Y, Py) is
a monomorphism.
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DEFINITION 2.5. A triangular norm is a function ¢ : I x [ — I,
that is order preserving in both coordinates and satisfies the following
conditions:

(1) t(z,y) =

(2) t(z, t(y
(3) t(1,2)

t(y, x).
z)) = t(t(z,y), 2).

x.

LEMMA 2.6. For any triangular norm t on I, there is a tensor product
® on FRel defined as follows:
1. (X,Px)® (Y, Py) = (X xY,t(Px, Py)) where

t(Px,Py):tO(PXXpy):min{Px,Py}.

2. r ® s is the ordinary product relation r X s.
3. The tensor unit is ({*}, Pry) with Ppy(x) = 1.

Proof. See [3]. O

DEFINITION 2.7. &£ has quasi exponentials if for any objects A and
B in & with tensor products, there exists an object B4 and a morphism
evy: BA® A — B, called a quasi evaluation morphism of A, such that
forany Y and f: Y ® A — B in &, there exists a unique morphism g
such that the following diagram

vyeod — B

g®idA l J/idB

BA®A —— B

evp

commutes.

DEFINITION 2.8. If £ is a category with a quasi middle object M,
then a quasi subobject classifier is an object C' together with k : M — C'
such that for any quasi monomorphism f : A — D, there exists a unique
morphism ¢y : D — C such that the following diagram
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is a pullback.

DEFINITION 2.9. A quasi topos is a category &£ that satisfies the
following conditions:

(QT1) & has a quasi middle object, equalizers and finite tensor prod-
ucts.

(QT2) &£ has quasi exponentials.

(QT3) & has a quasi subobject classifier.

DEFINITION 2.10. A category £ with tensor products is said to have
quasi power objects if for any object A there are objects P(A) and e,
and a quasi monomorphism € : ¢4 — P(A) ® A such that for any object
B and quasi monomorphism r : R — B ® A there is a unique morphism
fr: B — P(A) such that the following diagram

fr@idalr
R —)A‘R €A

BRA —— PA®A

fr®idA
is a pullback.

DEFINITION 2.11. Let & be a category admitting arbitrary colimits.
Denote by E=F unct(é"’p Sets) the category of presheaves of sets on
&, and by E C & the full subcategory of g consisting of continuous
presheaves F' : £ — Sets. £ is complete if EE.

DEFINITION 2.12. A vectoid is a category £ endowed with an asso-
ciative and commutative tensor product ® : £ x £ — £ , admiting a
unit and satisfying the following conditions:

(1) Arbitrary small colimits exist in £.

(2) The bifunctor ® : € x € — & is cocontinuous.

(3) Finite limits exist in &.
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(4) Epimorphisms are universally effective and all equivalence rela-
tions are efficient in £.

(5) £ admits a small system of generators.

(6) & is complete.

3. Quasi Topos

THEOREM 3.1. Quasi middle object exists in FRel.

Proof. Let (I, Pr) be an object with Pr(t) =t for all ¢ € I. Then for
any object (A, Pa), there exists a unique morphism P4 : A — [ such
that the following diagram

commutes. OJ
THEOREM 3.2. Fqualizers exist in FRel.

Proof. For any two objects (A, P4), (B, Pg) and two morphisms r, s :
A= B/ let E={ae€ Al (a,b;)) € 1,(a,b;) € s = b = b;} with
Pr = Pslg and v : E— A be a morphism defined by (a,a) € v. Then
we get rov = sow. Also we have Py(a) > Pg(e) for any (e,a) € wv.
For any v : £/ — A such that r o v’ = s o v/, there exists a morphism
w: E' — FE defined by (t,a) € w where (t,a) € v" and (a,a) € v. So we
have v ow = v'. Since Pa(a) > Pg(e’) for any (¢/,a) € v/, Pg = Pa|g
and (¢/,e) € wNv for any ¢ € E', we get Pg(e) > Pg/(e’) for any
(¢/,e) € w. Therefore ((E, Pg),v) is the equalizer of r and s. O

THEOREM 3.3. Quasi exponentials exist in FRel.

Proof. Let (A, P4) and (C, P¢) be two objects, then we have (H, Pg)
where H = C4 = {h C A x C | Po(c) > Pula),(a,c) € h} with
Py : H — I defined by

Py (h) = sup{k € I | min{Ps(a),k} < Pcoh(a),a € A}.
Also we define the quasi evaluation morphism evy : H X A — C' by



80 Ig Sung Kim

eva(h,a) = h(a),
such that for any Y and f : Y x A — C, there exists a unique
morphism ¢ : Y — H such that the following diagram

(Y x A, min{Py, Pa}) —L— (C,Pc)

gxida J{ lidc

(H X A,WLZTZ{PH,PA}) —_— (C, Pc)

evp
commutes.
Clearly {(H, Py),eva} is the quasi exponential in FRel. ]

THEOREM 3.4. Quasi subobject classifier exists in FRel. That is,
there exists an object (I, Py) with P;(z) = 1 for all z € I together
with i : I — I defined by i(j) = j for all j € I. And for any quasi
monomorphism m : B — A, there exists a unique morphism ¢, : A — I
such that for all a € A, Pa(a) > k where (a,k) € g, and the following
diagram

(B, Pg) —2 (I, P;)

| L
(A, Py) — (I, P))

qm

is a pullback where (I, Pr) is the quasi middle object.
Proof. Let q,, : A — I be a morphism defined by

. PB(b)a lf (baa) cm
4m(@) = 0, otherwise

Then Pa(a) > k and ¢,, om =io Pg. Let n: C' — A be a morphism
such that Pyon > Py and 710 Po = ¢, on. Then there exists an
element b € B such that n(c) = m(b) where (¢,a) € n and (b,a) € m.
So there exists a morphism n’ : C' — B defined by n’(c) = b such that
mon’ =nand Pgon' = Po. Also b = n/(c) implies m(b) = m(n’(c)).
By n(c) = m(n'(c)), we get mon’ = n. Thus Po(c) = gm0 n(c) =
gm o m(b) = Pg(b) = Pgon/(c). So we have P = Pgon’. Hence the
following diagram
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(B7PB) i> (val)

4 |

(A, Py) —— (I, P))

qm

is a pullback. Assume that there exists another ¢/, such that ¢/, om =
i o Pg = ¢, om. This implies ¢, (m(b)) = gn(m(b)). Also if a ¢ m(b),
we get q,,(a) = gn(a) = 0. So ¢n = qp,. O

REMARK. g, is called the quasi membership morphism.

COROLLARY 3.5. FRel is a quasi topos.

4. Quasi Power Objects

THEOREM 4.1. Quasi power objects exist in FRel.

Proof. Let P(A) = {klk : A — I, k(a) < Pa(a) Ya € A} with
Ppay(k) = 1 for all k € P(A) and €4 = {(k,a)|k € P(A),k(a)
P(A) x A with P.,(k,a) = k(a). Also we construct s : P(A) X
defined by

k o k(a)v Zf(kaa) € €a
sk, a) = 0, otherwise
Then s is the quasi membership morphism of m : e4 — P(A) x A where
m(k) = k, so the following diagram

P,
€A — I

m| K
P(A) x A — I

is a pullback, where i : [ — I defined by i(j) = j for all j € I. Let u be
the quasi membership morphism of . Then the following diagram
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R — T

BxA —— 1

u

is a pullback. Also let f, : B — P(A) be a morphism defined by

v(b,a), if(b,a) € R
i = {

0, otherwise

Then so (f, X idg)or =iowv and so (f. X ida) = u. By the property
of pullback, there exists a morphism g, = f,. X ida|r : R — €4 such that
P.,og. =wvand mog, = (f, xidy) or. By the pullback lemma, the
following diagram

R L) €A

BxA —— PA)xA
frxida
is a pullback. Assume there exists another f! such that mo g, = (f, x
ida)or where g = flxida|r . Then we have io P, og.. = so(f! xid4)or.
Also g.(b,a) = (f.(b),a) for any (b,a) € R, P, ,og. = vand so(f.xids) =
u. So u(b,a) = (f.(b),a) = (f-(b),a) for any (b,a) € R. Hence f. = f,.
Also (f/(b),a) = 0 = (f.(b),a) for any (b,a) ¢ R. Therefore f, is
unique. ]

5. Logic Operations of the Quasi Topos FRel
THEOREM 5.1. Negation () exists in FRel.

Proof. Let L : (I, Pr) — (I, Py) be a quasi monomorphism defined by
(u,1—u) € L forallu € I with P;(z) =1 for all z € I and P;(t) =t for
all t € I. Then —: (I, Py) — (I, Py) is the quasi membership mophism
of the 1. That is, the following diagram
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(I,P) —2s (I1,P)

J_l J
(L, Py) — (I, Fy)

is a pullback, where i : I — I defined by i(j) = j for all j € I. Thus we
obtain = : (I, P;) — (I, Py) defined by (v,1 —v) € ~forallvel. O

THEOREM 5.2. Conjunction (A) ezists in FRel.

Proof. Let h : IxI — I be amorphism defined by ((p, q), min{p, q}) €
h for all p,q € I and ¢ x i : I x I — I x I be a quasi monomorphism
defined by ((a,b), (a,b)) € i x i for all a,b € I. Then A is the quasi
membership mophism of the ¢ x ¢. That is, the following diagram

(IxIh) — (1,P)

(IX[,PJ)T)(I,PJ)
is a pullback, where i : I — I defined by i(j) = j for all j € I. Thus we

obtain A : (I x I, P;) — (I, P;) defined by ((u,v), min{u,v}) € A for
all u,v € 1. O

THEOREM 5.3. Disjunction (V) exists in FRel.

Proof. Let k : IxI — I be a morphism defined by ((p, ¢), max{p,q}) €
k for all p,g € I and v x¢: I x I — I x I be a quasi monomorphism
defined by ((a,b), (a,b)) € i x i for all a,b € I. Then V is the quasi
membership mophism of the ¢ x ¢ . That is, the following diagram

(IxI1,k) —s (1,P)

(IXI,PJ)T)(I,PJ)
is a pullback, where i : I — I defined by i(j) = j for all j € I. Thus we
obtain V : (I x I, P;) — (I, P;) defined by ((u,v), maz{u,v}) € V for
all u,v e 1. O
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THEOREM 5.4. Implication (=) exists in FRel.

Proof. Let g : I x I — I be a morphism defined by ((p, q), maz{l —
p,qt) €Egflorallpgelandixi:Ix I — IxIbea quasi monomor-
phism defined by ((a,b), (a,b)) € i x i for all a,b € I. Then = is the
quasi membership mophism of the 7 x 7. That is, the following diagram

(I x1,g) -7 (1, Pr)

(IX[,PJ) — (I,PJ)
=

is a pullback, where ¢ : I — I defined by i(j) = j for all j € I. Thus we
obtain =: (I x I, Py) — (I, P;) defined by ((u,v), max{l —u,v}) €=
for all u,v € I. O]

6. Vectoid of the Quasi Topos FRel

THEOREM 6.1. Arbitrary small colimits exist in FRel.

Proof. For any (A, P4), there is a unique morphism r : (¢, Py) —
(A, P4) such that P4 or > P, So the initial object exists in FRel.
For any two objects (A, P4), (B, Pg) and two morphisms r,s : A =
B, let () be the smallest equivalence relation on B that contains all
({r(a)},{s(a)}). And let C' = B/Q with Pc(c) = maz{Pp(b)} and g be
a quotient morphism. Then (g, C) is a coequalizer of a pair r and s. By
gor =gqosand for any ¢’ : B — C’ such that ¢’ or = ¢’ o s with

Po(d) = { maz{FPe(c)}, if(b.c) € dand (b,c) € g

1, otherwise

there exists a unique morphism u : C' — C” such that uoq = ¢ since Q is
the smallest equivalence relation on B that contains all ({r(a)}, {s(a)}).
So the coequalizer of a pair r and s exists in FRel . By similar method,
multiple coequalizer exists in FRel. A coproduct of a pair (A, P4) and
(B, Pg) is a triple((A U B, Paug), jta, i) where A LI B is the disjoint
union of A and B, and two injections pu4 : A — AU B defined by
pa(a) = (a,1) and pup : B — AU B defined by ug(b) = (b,2) with

PAL,B((Z, 1) = PA(CL),CI cA
Paup(b,2) = Pp(b),b € B.
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So the coproduct of a pair exists in FRel. By similar method, FRel has
coproducts. By the coequalizer and the coproduct, the pushout of s
along r where s : A — C' and r : A — B exists in FRel. By similar
method, FRel has multiple pushouts. O

THEOREM 6.2. The bifunctor @ : F'Rel X F Rel — F' Rel is cocontin-
Uous.

Proof. Given (X, Px) and for any (A, P,4), there is a unique morphism
r:¢ — X x Asuch that Py, 401 > P,. Also we have X X ¢ = ¢. So it
preserves the initial object. For any two objects X x A, X x B and two
morphisms idx X r,idy X s : X x A = X x B, let Q" be the smallest
equivalence relation on X x B that contains all ((x,{r(a)}), (z,{s(a)})).
And let ¢" = (X x B)/Q" with Po(¢') = max{Pxxp(b)} and ¢’ be a
quotient morphism. Then (¢, C”) is the coequalizer of a pair idy X r
and idx x s. And we have X x B/Q = (X x B)/Q" where @ is the
smallest equivalence relation on B that contains all ({r(a)}, {s(a)}). So
it preserves a coequalizer of a pair. By similar method, it preserves
multiple coequalizers. A coproduct of a pair X x A and X x B is a
triple(X x AUX X B, fixxa, ixxp) With two injections prxxa : X X A —
XXxAUX xBand uxxp: X x B— X x AU X x B. And we have
X X (AUB) = (X x A)U(X x B). So it preserves a coproduct of a pair.
By similar method, it preserves coproducts. By the coequalizer and the
coproduct, the pushout of idy x s along idx x r where idy xs: X x A —
X xCandidy xr: X xA— X x B exists in FRel. So it preserves
pushouts. By similar method, it preserves multiple pushouts. O

THEOREM 6.3. Finite limits exist in FRel.

Proof. For any (A, Py4), there is a unique morphism r : (A4, Py) —
(¢, Py) such that Pyor > P4. So the terminal object exists in F'Rel. For
any two objects (A, P4), (B, Pg) and two morphisms 7,5 : A =% B, let
E={a€ Al (a,b) €r(a,c) €s=b=c} with Pg(a) = Pa(a) and
q: E — Adefined by (a,a) € g forall a € E. Then roq = soq. For any
q : B/ — Asuch that roq¢ = so(¢/, since F is the largest subobject with
roq = sogq, there is a unique morphism v : £/ — E such that gov = ¢'.
So the equalizer of a pair r and s exists in FRel. A product of a pair
(A, P4) and (B, Pp) is a triple((AU B, Payg), ma, 5) where AL B is the
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disjoint union of A and B, and two projections 74 : AU B — A defined
by ma(a,1) = a and 7 : AL/ B — B defined by mg(b,2) = b with

PAI_IB(a; 1) = PA(CI,),(I c A

Paup(b,2) = Pg(b),b € B.

So the product of a pair exists in FRel. By the equalizer and the
product, the pullback of s along » where s : Y — C and r : X — C
exists in FRel. O

THEOREM 6.4. Epimorphisms are universally effective and all equiv-
alence relations are efficient in FRel.

Proof. For any epimorphism e : (X, Px) — (Y, Py), there is a kernel
pair (p,q) of e where B = {(a,b)|(a,y),(b,y) € e} and p,q : B = X
defined by ((a,b),a) € p and ((a,b),b) € ¢. That is, the following
diagram

B s Xx

AR

X — Y
is a pullback. If there is a morphism s : X — Z such that sop =so04¢,
since Y is the largest object with eop = eogq, there is a unique morphism
k:Y — Z such that koe = s. So the epimorphism e : (X, Px) — (Y, Py)
is universally effective.

For any (X, Px) and an equivalence relation 7 C X x X, there is a

fibered product X x x/. X such that the following diagram

X xx, X /= X

= |7

X T> X/T’

is a pullback. So for two morphisms 77, 7 : » = X such that hon} =
h o 7y, there is a morphism ¢ : r — X Xx/, X such that m 0 p = 7
and my 0 ¢ = 7, where ¢(a,b) = (pi(a),p2(b)). Thus m o p(a,b) =
m(p1(a), pa(b)) = ¢1(a) and 7 (a,b) = a. So we get pi(a) = a and
@2(b) = b. Therefore r = X xx,, X. O
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THEOREM 6.5. FRel admits a small system of generators.

Proof. For any (A, P4) and (B, Pg), let 7 # s : A = B. Then there
is an element a € A such that (a,b) € r and (a,c) € s. We construct
X = ({*}, Py) with Ppy(x) = min{Ps(a)} foralla € Aandq: X — A
defined by (*,a) € g. Then roq # sogq. O

THEOREM 6.6. FRel is complete.

Proof. For any G € ob(]*:i%zl), since F'Rel is cocomplete and G is
representable, G has a left adjoint F. So for any K € ob(F Rel), there is

an object FoG(K) such that FoG(K) € ob(F Rel). Since F'Rel C FRel,

—~

we have F'Rel = F Rel. O

COROLLARY 6.7. FRel is a vectoid.
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