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EVALUATIONS OF THE CUBIC CONTINUED
FRACTION BY SOME THETA FUNCTION IDENTITIES

JINHEE Y1' AND AND DAE HyuN PAEK*

ABSTRACT. In this paper, we use some theta function identities
involving two parameters h,, ; and h’/ﬂ,k for the theta function ¢ to
establish new evaluations of Ramanujan’s cubic continued fraction.

1. Introduction

Ramanujan’s cubic continued fraction G(q), for |¢| < 1, is defined by
3 g+ Pt+qt P+t
L+ 1 + 1 + 1 + -

It has been known that evaluating values of G(e~™V") and G(—e™™V")
for some specific positive rational numbers n is quite difficult in general.
Ramanathan [11] evaluated

Dy _ V9+3v6— V7+3V6
(1+V5)VV5+ V6

by using Kronecker’s limit formula. Andrews and Berndt [3] have also

Glg) =1

G(

given a proof of the evaluation of G(e~™v1%). Berndt, Chan, and Zhang
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6] evaluated G(e™™V7") for n = 2, 10, 22, 58 and G(—e~™V7") for n = 1,
5, 13, 37 by using Ramanujan’s class invariants. Chan [7] explicitly
evaluated G(e™™v™) for n = 1, 2, 4, % and G(—e ™) for n = 1, 5 by
applying some reciprocity theorems for the cubic continued fraction.
Adiga, Vasuki, and Mahadeva Naika [2] found the numerical values
of G(e™®) and G(—e ™) for n = 1, 2 2 L L by using some
modular equations. Adiga Kim, Mahadeva Nalka and Madhusudhan

[1] found values of G(—e~™™") for n = 1, 3, 5, 1, 1 1L Moreover,
Yi [12] found explicit values of G(e™™™) for n = 3, 6, 7, 8, 12, 16, 28,
;, :1,’, g, i, é,%andG( _“f)forn—2 3,4, 17, ;, 3 ,lbyusmg

Some eta-function identities. In [14] the values of G(e ’T‘f) forn=1,4,
9, 5 and G(—e ™) for n = 4, 9 were evaluated by employing modular
equatlons of degrees 3 and 9.

Recently, Paek and Yi [8, 9, 10] exploited some theta function iden-
tities related to modular equations of degrees 3 and 9 to obtain explicit
values of G(e™™V™) for n = 1, 8 16 32, 36, 64, 81, 128, 144, 256 324, 1

) 2

4 8 16 32 64 128 1 1 1 1111 11
313037 87 3031 468 ) 16 207 32 18 96° 128" 192’1384 ancli alfo

e T 4 8 16 32 1 1 1 1 1 1
G(—e )forn—8 16, 32, 36, 64, 81, 5, 5,48 2 L L L L L &

487 967 1287 192 384 o o _
In this paper, we employ some theta function identities involving two

parameters h, and h;,, for the theta function ¢ to establish 36 new

explicit values of G(e~™V™) for n = 5, 20, 27, 45, 48, 80, 108, 180, 432,
720,14 9 16 36 14 5020 S0 1 4 16 L 4 16 gng G- —m/ﬁ)

’5’5’5’575’ ) 79’9’270’271’27’45’45’45

L 49736 5 2
for n = 20, 27, 45, 180, 5155 509 9 A5 15°

Ramanujan’s theta function ¢(q), for |g| < 1, is defined by

-y ¢

n=—0oo

Recall two parameters hy,, and hj, ,, for the theta-function ¢ from [13].
For any positive real numbers k and n, define hy, by

PR ()
T R p(gk)

where ¢ = e”™V™* and define by by

T g Ap(—gk)’
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where ¢ = e 2"V"/k,
Yi [13] has established some useful properties of hy

(11> hk:,l = h’l;,'}za
and
(1.2) M = P -

Note that general formulas for G(e=2™V") and G(—e~™") in terms
of hy,, and hg, were given in [15, Theorem 6.2(iii) and (iv)] as follows:

1 — /3R
(1.3) G(e V) = #
and
(1.4) G(—e ™) = L= Y3 hon ?hgﬁ".

In view of (1.3) and (1.4), in order to compute G(e~2™V" ) and G(—e~™"),
it suffices to evaluate hg,, and hg,, respectively. Throughout this paper,
we assume the subscript n in hg,, and hg, to be a positive real number.

2. Evaluations of hg, and hy,

We begin this section by establishing the evaluations of hg 3 and hg s
which will play key roles in finding hg, for some n. We first need the
following theta function identities involving hs,, and hg z.

LEMMA 2.1. For any n, we have
(2.1) (V3Bhgphsn — 1)* =3h3, — 1.
Proof. By [4, Entry 1(iii), p. 345], we have

(90(611/3) _1)3_ #'(4)

o(q?)

i)

or equivalently

3
(@(q”g) plg) 1) A
ela)  o(¢®) ©*(¢*)
Rewrite the last equality in terms of hg, to complete the proof. n
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We next need the following theta function identities involving hs ,
and hsg, that follows from a modular equation in [5, Entry 67, p. 235]

2 2
P P
such as PQ + P5_Q = <%) +3% + 3@ — (é) , where P = ;’}(q%) and

~

Q= e(d*)

e(a'®)”
LEMMA 2.2 ([13], Theorem 4.14(i)). For any n, we have
(2.2)

hn2 hn hn hn ?
Ve aoon - Y3 :(5,9)+3(5,9+ )_()

+
h5,nh5,9n h5,n h5,n h5,9n h5,9n

We need another theta function identity involving hg, and hgg, to
establish some further evaluations of hg, that follows from a modular

3 3 Q\’
i _ el _ il IR _ @
equation <P 3+ P) (Q 3+ ) = ( ) , where P = ) and

Q P
Q f((;;)) in [14, Theorem 3.5].

LEMMA 2.3 ([14], Corollary 3.6). For any n, we have
(23> 3h9,n(hg,n - \/ghg’n + 1)(h52),9n - \/§h9,9n + 1) = hg,gn'

1

We begin with the evaluations of hg, for n = 3, 27, 3, and 2—17

THEOREM 2.4. We have

D) hos = ,
) hos 14+ /2

35/6
(11) h9727

3 V3
. V2+ 3+ V4
(iv) hg 1 = .
157 35/6
Proof. For (i), it is sufficient to find the value of hsgo by (1.2). Let
n=91in (2.1) and put hs; = 1, then it follows that
hgg - \/gh;g _I_ 3h379 - \/g - 0
Employing Mathematica to solve the above equation for hsg¢ and then
V3
+V2

using hzg > 0, we find that hzg =
lished.

Thus (i) has been estab-
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For (ii), let n = 3 in (2.3) and put the value of hg 3 obtained from (i),
then it follows that
(1+ %)hgm + 3\/§(1 - \3/5)(%37 - \/§h9,27 +1)=0.

Employing Mathematica again to solve the last equation for hgo; and
then using hg o7 > 0, we complete the proof. The proofs of (iii) and (iv)

are clear by (1.1). O
We next evaluate hg,, for n =5, 45, %, g, %, and %.
THEOREM 2.5. We have
: 1++/3
(1) h9,5 = = =)

V3++/5
(i) h 3-3V2V3+2V5+6vV4+15
11 == )
4 6+ /3 +2v15
1+ V—-2v3+2V5
(ili) hgs = :
79 ﬁ
. V345
(IV) hg 1 ==
6+ 3 +2V15
(v) hyg

1= ,
T 3-3V2V3+2vV54+6V4+ V15
V3
9 = : .
To1+V-2v3+2V6
Proof. For (i), it is enough to find the value of hsg by (1.2). Letting
n =1 1in (2.2) and then putting hs; = 1, we find that
hio+ (3= V5)hig+ (3—V5)hsy—1=0.
Solving the above equation for hsg and then using hso9 > 0, we de-
1+3
V345

complete the proof of (i).
For (ii), setting n = 5 in (2.3) and putting the value of hg 5 obtained
from (i), we find that

(1+2V3 +2V5)h 45 — 3V3h2 45 + 9 hgas — 33 = 0.

Utilizing Mathematica to solve the last equation for hg 45 and then using
hg 45 > 0, we have completed the proof of (ii).

(Vi) hyg

duce that hsg9 = where we utilized Mathematica. Hence we
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The proof of (iii) is similar to that of (ii) and the proofs of (iv)—(vi)
are clear by (1.1). O
See [13, Theorem 4.15(i)] for an alternative proof of Theorem 2.5(i).
We now turn to the evaluations of hy,, for n = 3, 5, 27, 45, %, %, %, g, 217,

and 4—15. But first we need the following theta function identity involving

P 3
hg ,, and hg ,, that comes from a modular equation é + % +2=0Q+ @,
where P = )) in [14, Theorem 3.3].

LEMMA 2.6 ([ 4], Corollary 3.4). For any n, we have
1 h9 n hg)
2.4 3| he = — 42,

We first evaluate hyg ,, for n = 3, 27, é, and 5

THEOREM 2.7. We have

i) i 2+ V1)1 -V3+2)
9,3 — 2\/— ’
—2 — 2+ VA + V36 — 355 + {/9(—1+ V/2)?

(11) hg),27 = \/5—2\/54-\/1 ’
(iii) !, = 1-v3+ 32
"5 VBY2

+1—\/3+2€’/§+2€’/Z
o5 VBT asarvE)

Proof. For (i), letting n = 3 in (2.4) and then putting the value of
hg 3 in Theorem 2.4(i), we find that

(14 V2)(2 = V2)his — 2V3 (1 + V2)hy 5 + 3v2 = 0.

Using Mathematica to solve the above equation for hg ; and then using
hgy 3 < 1, we complete the proof of (i). The proofs of (ii)-(iv) are similar
to that of (i). O

/ _ 1 5 1
We next evaluate hy ,, for n =5, 45, 2, 5, 5, and 4.

THEOREM 2.8. We have

(i) M5 = %(1+\/§) <3+\f— \/6+6\/5>,
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V3V2v3+2v5

(ii) h§,45: 3 ’
1+vV1+2v3+2V5+v2v3+2V5

(iii) A’ :i<1+1_\/1_2¢§+2\/5>
% V3 V-ov3+2v5 )

(i) _1+VB+(B-VIE)V-1+2/3+2V5
(2 +¢f )(3—5) ’
, 1 1—V1+2V3+2V5

N R A Mo Fry )

;o V3V -2v3 +2V5
" 14 V1-2v3+ 26+ V—2/3+2/5

Proof. For (i), let n = 5 in (2.4) and then put the value of hg; in
Theorem 2.5(i), then we deduce that

(3= VB)hds —2(1+V3)hy, + (2+V3)(3—-V5) = 0.

Employing Mathematica to solve the above equation for hg 5 and then
using hg 3 < 1, we complete the proof of (i). The proofs of (ii)-(iv) are
similar to that of (i). O

We evaluate some more values of hg,, and hy,, by utilizing the follow-
ing two theta function identities involving hg o hé&, and hg ,,.

LEMMA 2.9 ([9], Corollary 3.2). For any n, we have

(2.5) \/§(h’ + 1)—h,9”/4+h§” +2
‘ o hg),n h/9,n hé n/4 ‘
P Q 3
Note that ( 5) follows from a modular equation 0 += 2 +2=Q+ 0’
where P = ( y and Q = —qqu)) in [9, Theorem 3.1].

LEMMA 2.10 ([ 4], Corollary 3.2). For any n, we have

h ,n h’/n
(2.6) V3hoah 0+ [ Ty [ n/t
9nlt 9n/4 9n/4

Note that (2.6) follows from the modular equation in [14, Theorem

3.1] such as VPQWL—,W = \/E+W/§+2’ where P = ;iqqg) and
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Q = %. We establish the evaluations of h‘g,n for n = 12, 108, %, %,
27 1 4 1
2 120 270 and 108"

THEOREM 2.11. We have

V3 (1-VV2+ V- V3)

(i) h9,12: 5 /5133 \/_ \/_
T Y 74 5v/2 + 4+/4
(ii) h9,%_ 4—3y2—2v/4+ 7 ,
o a—y/V3a(l - VBa+a?)
(iii) 9,108 — 1+ 3a )
/ \/§<4+2€/§+€/Z+2€/§—2€’/§\/3+2€/§+2\3/Z>
(IV) 97%7 = 5/3\454—\3/1—2\3/5)2 ’
oo b b 1+VS
M gy =5mt 7 pas
N s 1+ v/2
(vi) hgé— V2 + 7
. (€/§+€/Z)(1—\/2+2€/’—\/3+6\3/§+6%)
vil) A, , = — )
(Vi) hg 4 = =+ 35/6(1—\/3+2€/§+2\71)
(viti) I 41— V24 V3)—2(V4+V6) + V9
:1(1)8 o 3(31/6+\3/6)+35/6(2_\?/§> ’

—2 — 2+ VA + 36 — 30 + {/9(—1 + ¥/2)2
a = .
V2+V1-2V3

Proof. For (i), let n = 12 in (2.5) and put the value hg 5 in Theorem
2.7(i), then we find that

2 (—2+ \3/5+3\/§) hgro+4V3hy 1+ (2+V4A)(1—V3+V2)—6 =0.

Using Mathematica to solve the above equation for hg ,, and then using
hg 1, > 0, we complete the proof of (i).
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For (ii), let n = 3 in (2.6) and then put the value hg3 in Theorem
2.4(i), then we find that

(2—V2)hy 5 ~ 2\/\/5(1 + %)h,&% +V3V2=0.

Employing Mathematica to solve the above equation for hy ; and then
4
using hy 5 < 1, we see that we complete the proof of (ii). For the proofs

of (iii)—(viii), either apply (2.5) and Theorem 2.7 or apply (2.6) and
Theorem 2.4, and repeat the same arguments as in the proofs of (i) and
(ii). O

We end this section by evaluating hj,, for n = 20, 180, 2, % 26

5 45 4 36
)40 40 50 5
20 1 9 5 4

1
9 200 300 360 150 A 155-

THEOREM 2.12. We have

(1+\/§)<2—\/6+6\/5—6\/2+2\/5)

3+2v3-v5—-v6+6V5
(1+v3)(5+3V5) [-6+12V/3+12V5
—2(vV3+V5) 47 —21v5

—V/3b (1_\/2+2b2+b3+2\/1+b3_1>

(i) h§,20 =

(i) hgs =

(iii) hé,lgo =

1-204++1+03 b(1+b+V1+b)

GG BE 4 GVIT B — 6y/(2— BWIT B VB

(iv) B as = 2v3(1 4+ b+ 1+ 03)? ’

) B :i+2—2\/4+\/§+\/5—\/17+4\/§+8\/5+2\/ﬁ
VB VYV avE (1-VI- 2325 )

| L+ VA VI5 (1= VTI-2V3+25)

(vi) B, = — ,
1426+ 615+ 612+ 25

3—\/§+\/5+\/1_5+2\/3(2+\/§)(1+\/3)7

y C(C1+VB)(B+3V5)  [-6-12v3+12V5
w23 +2V5 T2y

(vii) h

/
4
9,3

(viii)
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LB 4 A - (4 BV B
kB V3b(1—VI+07) ’
0 H :L+1—V1[+2\/§+2\/5
™oV VBYA+VIB
2V3b (1_\/1_8b—2b2—2\/m>

5 ST TRy Ab— 1 + by/3 + b
\/§<2—2\/1—2¢§+2\/5+€’/4—\/ﬁ)

h (2- \3/—2\/§+2\/S>2

b= 1/2v3+2V5.

Proof. For (i), let n = 20 in (2.5) and put the value of hg 5 in Theorem
2.8(i), then we deduce that

3+2V3-V5-V6+6V5,, | 242V/-6+43V5 _
2+ V3-15 Y N
Employing Mathematica to solve the above equation for hg ., and then
using hg 15, > 0, we complete the proof of (i).
For (ii)—(xii), repeat the same argument as in the proof of (i) by either
applying (2.5) and Theorem 2.8 or applying (2.6) and Theorem 2.5. [

)

where

2
h9,20 -

3. Evaluations of G(q)

In this section, we establish the explicit evaluations of the cubic con-
tinued fraction. We explicitly evaluate 25 new values of G(e~™v") and
11 new values of G(—e~™") for some n. We first evaluate G(e~™v") for
n =12, 108, %, and %.

THEOREM 3.1. We have

() Glem) = 2 — 22+ VA)(1 - V3 + V2),
(i) G(e6V3)

V3 (2+V§—€/Z—€/%+35/6— \ 9(\3/5—1)2)
=3 F 2(V2 4 V4 —2¥/3) ’




Evaluations of G(¢) by Some Theta function Identities 1053

3
(111) G(G—Qﬂ/\/g) — _5—+3\/§7
2
\3/3(—1+\/3+2\3/§+2\3/71)
(iv) Ge™>/3V%) = T :
2(V2+V4)
Proof. The proofs are clear by (1.3) and Theorem 2.7. O

See [12, Theorem 6.3.7(ii)] and [8, Theorem 5.1(i)] for alternative
proofs of Theorem 3.1(i) and (iii), respectively.
We now evaluate G(e~™") for n = 20, 180, %, %, %, and %.
THEOREM 3.2. We have
CVBHVE-3(1+V3)V-2+V5
a 2(-3+/5) ’
() Gieovom) = - V2V E 2V ,
2 2 (14 VI+2V3+ 25+ V23 +2V5 )
—1+V1-2v3+2V5
2V -2v3+2V5

1+\/9+6\/5—6\/6+3\/5

() Gle2V57)

(iii) G(e 2V57/3) =

(iv) G(e 27/V5) =

2(1++/3) ’

-1 1+2 2

(V) G(e_gw/3\/g) _ +;/ + \/§+ \/57
2v/2v3+2V5

1 vV —2 2
(vi) G(e 67/VB) = = — 3 V3 £ 2v5 :

2 2 (14 V12325 + V=23 +2V5)

Proof. The results follow from (1.3) and Theorem 2.8. O

We now find G(e~™V") for n = 3, 27, 48, 80, 432, %, 13—6, 2%, and ;—?.

THEOREM 3.3. We have
(i) Gle V3m) = % (=6 —5v2 —4V41+ V3 (4+3V2+2V1)),
(ii) Ge ?V3)
13 (442024 VI+ 200 - 205V3+ 202 + 2VA)

2 2(V2+ Vi-23B) |
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1 3(1- VR V=B
(i) Gl =3 - 2(2—35+3\/§) 7

1—\/3\/§a(1—\/§a+a2)

(iv) G(e12Y3m) =

2 —2v3a ’
W) Gl = =L
() ety = VIR,
(vil) G(e=™/3V3) = _3%/3 4 @

(1+{‘7§)(1—\/2+2\3/_—\/3+6€/§+6{ﬂ>
W(—1+\/3+2€/§+2€/1)

(viil) G(e™47/3V3) =

)

where
—2 — Y2+ A+ 36 — 30 4 $/9(—1 + /2)2
a = .
V2+V4-2V3

Proof. The results are immediate consequences of (1.3) and Theorem
2.11. O

See [12, Theorem 6.3.3(i)], [12, Theorem 6.3.3(vi)], and [8, Theorem
5.1(ii)] for alternative proofs of Theorem 3.3(i), (v), and (vi), respec-
tively. We further evaluate G(e~™v") for n = 5, 45, 80, 720, %, %, %,
44 5 80 1 ,oq16

50 97 9 450 M4 45

THEOREM 3.4. We have

1+(3+\/§)(5+3\/5)+3 —1+2v3+2V5
2 4(v3 - +/5) 94 — 421/5

(i) Glev™) =

(ii) G(e3Vom)
| 3242210 4 2/TFF) 32— BT+ VB

+ :
2 4(14+b+V1+1b%)? 20 +b+V1+02)?
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(3+\/§)<2—\/6+6\/5—6 2+2\/5)
2(3+2v3- V5 V6 +6v5)

(iii) G(e 1V5m) =

| —

(iv) G(e 12V5m)

1
=—+
2 2—4b+2V1+03

3b (1_\/2+2b2+b3+2\/1+b3_1>

b(1+b+v1+1b)
(v) Gle—/V5) = X _ (3-V3)(5+3V5) 3 [-2-4v3+4v5
=3 4(V3+5) N T s

3(1-Vim2EE2/A+ 1= VD)
(2- V23 12v5)

(vil) Ge—4/VF) = L 4 2/3 —3\/2+2\/3 NCFEN |

3—\/§+\/5+\/E+2\/3(2+\/§)(1+\/5)

(vi) G(e™*/VP) =

)

l\')lr—t

(viil) G(e 12m/V5)
1 3b - 1_86—262—2\/8b+b4
2 4b—0b*—/8b+b* 4b — b3 + bv/8b + b*
(ix) G(e~V5m/3) = —”4;\/1_5 <\/1 EDNCNE N 1)

VA VE VB VITE 4V 1 8V 4 2VT5 - 1
(V=2v3+2V5) V/2v3+ 25
\/1+2\/_+2\/5—1
2v/4++/15
V/4b+ 4bt — (4 + bV T 1P — b2
2b(1 — /1 +03) ’

= \/2V3+2V5.

Proof. The proofs are straightforward by (1.3) and Theorem 2.12. [

(x) Gle= )

(xi) G(e™/*V?) =

(xii) G(e=4m/3V5) =

where

We turn to the evaluations of G(—e™™7") for n = 3, 27, ;, and
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THEOREM 3.5. We have

i V3T :1_;
i) G(—e3Vimy = 1 _ 3V
(i) &( ) 2 12(€/§+€/§+\ﬂ)’
iii) G(—e ™/V3) = - —_
(i) G(—e/) = =
(iv) G(—e—/3v3) = _ 1T V2
/12

Proof. The results follow directly from (1.4) and Theorem 2.4. O

See [12, Theorem 6.3.5(ii) and (vi)] and [1, Theorem 5.6(iv) and (iii)]
for different proofs of Theorem 3.5(i) and (iii), respectively. See also
[1, Theorem 5.6(v)] for a different proof of Theorem 3.5(iv). We now

evaluate G(—e ™V") for n = 5,45, 1, 2 3 and L.

THEOREM 3.6. We have

i —eVom :—_3+\/5
(i) G( ) B VE)
) e 1 3(1- V2BV 2Vt VIS
i) G(—e-m/VE) = Z2 T V3= VIS
(iif) G( ) 20+ v3) ,3

1
(iv) G(=e™VP) = 2 — ,
2 2(14/~2v3+2v5)
V-V3+4+5
\3/21 ’
VV3++5
7
Proof. The results follow from (1.4) and Theorem 2.5. O
See [1, Theorem 5.6(i) and (ii)] for different proofs of Theorem 3.6(i)

and (iii). We close this section by evaluating G(—e™™") for n = 20,

4 36 20 4
180, 51 50 90 and R

(¥) Gl=e5r/%) = -

(vi) G(—e ™/3V0) = —

THEOREM 3.7. We have
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3—V5
V3+ V5 =3(14+V3)V-2+5
(3+v3) (2— \/6+6v5 -6 2+2\/5)
3+2v3 -5 —6+6V5 ’

1+b+V1I+0°
(1—2b+V1+0%)?

2122 + b3+ 21 + b
x(1+b+\/1+b3—3b\/—1+ A e e Tt )

(i) G(-e2V™) =

X | 1—

(i) G(—e0V5m) = —

b(1+ b+ 1+ 07)
1++3

1+ 4/9+6v5 — 616+ 2v5
x(1+ 13- 6y/24 25 +2V2+ 215 )

3 VB4 V54 VI5+2/32+VE)(1+5)
2b +b* + V8b + b*
11— 3ht ot

i 6b - 1_8b—262—2\/8b+b4
4h — b2 — \/8b + bt 4h — b3 + b\/8b + b* ’
(v) G(—e2V57/3)
2\/4+\/§+\/_—\/17+4\/§+8\/3+2\/ﬁ—2
= 2
34+\/B(1—\/—2—¢§+2\/5)

4b+ 4b* — (40 + b)) V1 + b3) — b
(vi) G(—e 27/3V5) = \/ ( ) )

(iii) G(—e27/V5) = —

(iv) G(—e™/V?) =

(1—+1+0b3)2 7
where
b=\/2V3+2V5.
Proof. For (i), let n = 20 in G(e V") = —G(e™™")G(—e ™)

in [12, Lemma 6.3.6] and put the values of G(e=*V5™) and G(e~2V5™)
in Theorems 3.4(iii) and 3.2(i), respectively, then we have the desired
result. The proofs of (ii)—(vi) are similar to that of (i). O
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