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EVALUATIONS OF THE CUBIC CONTINUED

FRACTION BY SOME THETA FUNCTION IDENTITIES

Jinhee Yi† and and Dae Hyun Paek*

Abstract. In this paper, we use some theta function identities
involving two parameters hn,k and h′n,k for the theta function ϕ to
establish new evaluations of Ramanujan’s cubic continued fraction.

1. Introduction

Ramanujan’s cubic continued fraction G(q), for |q| < 1, is defined by

G(q) =
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · · .

It has been known that evaluating values of G(e−π
√
n) and G(−e−π

√
n)

for some specific positive rational numbers n is quite difficult in general.
Ramanathan [11] evaluated

G(e−π
√
10) =

√
9 + 3

√
6−

√
7 + 3

√
6

(1 +
√

5 )
√√

5 +
√

6

by using Kronecker’s limit formula. Andrews and Berndt [3] have also

given a proof of the evaluation of G(e−π
√
10). Berndt, Chan, and Zhang
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[6] evaluated G(e−π
√
n) for n = 2, 10, 22, 58 and G(−e−π

√
n) for n = 1,

5, 13, 37 by using Ramanujan’s class invariants. Chan [7] explicitly
evaluated G(e−π

√
n) for n = 1, 2, 4, 2

9
and G(−e−π

√
n) for n = 1, 5 by

applying some reciprocity theorems for the cubic continued fraction.
Adiga, Vasuki, and Mahadeva Naika [2] found the numerical values

of G(e−2π) and G(−e−π
√
n) for n = 1

3
, 25

3
, 49

3
, 1

75
, 1

147
by using some

modular equations. Adiga, Kim, Mahadeva Naika, and Madhusudhan
[1] found values of G(−e−π

√
n) for n = 1, 3, 5, 1

3
, 1

5
, 1

9
, 1

27
. Moreover,

Yi [12] found explicit values of G(e−π
√
n) for n = 3, 6, 7, 8, 12, 16, 28,

1
2
, 1

3
, 4

3
, 1

4
, 1

9
, 4

9
and G(−e−π

√
n) for n = 2, 3, 4, 7, 1

2
, 1

3
, 1

4
, 1

9
by using

some eta-function identities. In [14] the values of G(e−π
√
n) for n = 1, 4,

9, 1
3

and G(−e−π
√
n) for n = 4, 9 were evaluated by employing modular

equations of degrees 3 and 9.
Recently, Paek and Yi [8, 9, 10] exploited some theta function iden-

tities related to modular equations of degrees 3 and 9 to obtain explicit
values of G(e−π

√
n) for n = 1, 8, 16, 32, 36, 64, 81, 128, 144, 256, 324, 1

2
,

4
3
, 8

3
, 16

3
, 32

3
, 64

3
, 128

3
, 1

4
, 1

6
, 1

8
, 1

12
, 1

16
, 1

24
, 1

32
, 1

48
, 1

96
, 1

128
, 1

192
, 1

384
and also

G(−e−π
√
n) for n = 8, 16, 32, 36, 64, 81, 4

3
, 8

3
, 16

3
, 32

3
, 1

4
, 1

8
, 1

12
, 1

16
, 1

24
, 1

32
,

1
48

, 1
96

, 1
128

, 1
192

, 1
384

.
In this paper, we employ some theta function identities involving two

parameters hn,k and h′n,k for the theta function ϕ to establish 36 new

explicit values of G(e−π
√
n) for n = 5, 20, 27, 45, 48, 80, 108, 180, 432,

720, 1
5
, 4

5
, 9

5
, 16

5
, 36

5
, 144

5
, 5

9
, 20

9
, 80

9
, 1

27
, 4

27
, 16

27
, 1

45
, 4

45
, 16

45
and G(−e−π

√
n)

for n = 20, 27, 45, 180, 4
5
, 9

5
, 36

5
, 5

9
, 20

9
, 1

45
, 4

45
.

Ramanujan’s theta function ϕ(q), for |q| < 1, is defined by

ϕ(q) =
∞∑

n=−∞

qn
2

.

Recall two parameters hk,n and h′k,n for the theta-function ϕ from [13].
For any positive real numbers k and n, define hk,n by

hk,n =
ϕ(q)

k1/4ϕ(qk)
,

where q = e−π
√
n/k and define h′k,n by

h′k,n =
ϕ(−q)

k1/4ϕ(−qk)
,
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where q = e−2π
√
n/k.

Yi [13] has established some useful properties of hk,n:

(1.1) hk, 1
n

= h−1k,n,

and

(1.2) hk,n = hn,k.

Note that general formulas for G(e−2π
√
n ) and G(−e−π

√
n ) in terms

of h′9,n and h9,n were given in [15, Theorem 6.2(iii) and (iv)] as follows:

(1.3) G(e−2π
√
n ) =

1−
√

3h′9,n
2

and

(1.4) G(−e−π
√
n ) =

1−
√

3h9,n

2
.

In view of (1.3) and (1.4), in order to compute G(e−2π
√
n ) and G(−e−π

√
n ),

it suffices to evaluate h′9,n and h9,n, respectively. Throughout this paper,
we assume the subscript n in h′9,n and h9,n to be a positive real number.

2. Evaluations of h9,n and h′9,n

We begin this section by establishing the evaluations of h9,3 and h9,5

which will play key roles in finding h9,n for some n. We first need the
following theta function identities involving h3,n and h3,n

9
.

Lemma 2.1. For any n, we have

(2.1) (
√

3h3,nh3,n
9
− 1)3 = 3h4

3,n − 1.

Proof. By [4, Entry 1(iii), p. 345], we have(
ϕ(q1/3)

ϕ(q3)
− 1

)3

=
ϕ4(q)

ϕ4(q3)
− 1,

or equivalently (
ϕ(q1/3)

ϕ(q)
· ϕ(q)

ϕ(q3)
− 1

)3

=
ϕ4(q)

ϕ4(q3)
− 1.

Rewrite the last equality in terms of h3,n to complete the proof.
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We next need the following theta function identities involving h5,n

and h5,9n that follows from a modular equation in [5, Entry 67, p. 235]

such as PQ +
5

PQ
=

(
Q

P

)2

+ 3
Q

P
+ 3

P

Q
−
(
P

Q

)2

, where P = ϕ(q)
ϕ(q5)

and

Q = ϕ(q3)
ϕ(q15)

.

Lemma 2.2 ([13], Theorem 4.14(i)). For any n, we have
(2.2)
√

5h5,nh5,9n +

√
5

h5,nh5,9n

=

(
h5,9n

h5,n

)2

+ 3

(
h5,9n

h5,n

+
h5,n

h5,9n

)
−
(

h5,n

h5,9n

)2

.

We need another theta function identity involving h9,n and h9,9n to
establish some further evaluations of h9,n that follows from a modular

equation

(
P − 3 +

3

P

)(
Q− 3 +

3

Q

)
=

(
Q

P

)2

, where P = ϕ(q)
ϕ(q9)

and

Q = ϕ(q3)
ϕ(q27)

in [14, Theorem 3.5].

Lemma 2.3 ([14], Corollary 3.6). For any n, we have

(2.3) 3h9,n(h2
9,n −

√
3h9,n + 1)(h2

9,9n −
√

3h9,9n + 1) = h3
9,9n.

We begin with the evaluations of h9,n for n = 3, 27, 1
3
, and 1

27
.

Theorem 2.4. We have

(i) h9,3 =

√
3

1 + 3
√

2
,

(ii) h9,27 =
35/6

3
√

2 + 3
√

3 + 3
√

4
,

(iii) h9, 1
3

=
1 + 3
√

2√
3

,

(iv) h9, 1
27

=
3
√

2 + 3
√

3 + 3
√

4

35/6
.

Proof. For (i), it is sufficient to find the value of h3,9 by (1.2). Let
n = 9 in (2.1) and put h3,1 = 1, then it follows that

h3
3,9 −

√
3h2

3,9 + 3h3,9 −
√

3 = 0.

Employing Mathematica to solve the above equation for h3,9 and then

using h3,9 > 0, we find that h3,9 =

√
3

1 + 3
√

2
. Thus (i) has been estab-

lished.
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For (ii), let n = 3 in (2.3) and put the value of h9,3 obtained from (i),
then it follows that

(1 +
3
√

2 )h3
9,27 + 3

√
3 (1− 3

√
2 )(h2

9,27 −
√

3h9,27 + 1) = 0.

Employing Mathematica again to solve the last equation for h9,27 and
then using h9,27 > 0, we complete the proof. The proofs of (iii) and (iv)
are clear by (1.1).

We next evaluate h9,n for n = 5, 45, 1
5
, 9

5
, 5

9
, and 1

45
.

Theorem 2.5. We have

(i) h9,5 =
1 +
√

3√
3 +
√

5
,

(ii) h9,45 =
3− 3

3
√

2
√

3 + 2
√

5 + 6
3
√

4 +
√

15

6 +
√

3 + 2
√

15
,

(iii) h9, 5
9

=
1 +

3
√
−2
√

3 + 2
√

5√
3

,

(iv) h9, 1
5

=

√
3 +
√

5

1 +
√

3
,

(v) h9, 1
45

=
6 +
√

3 + 2
√

15

3− 3
3
√

2
√

3 + 2
√

5 + 6
3
√

4 +
√

15
,

(vi) h9, 9
5

=

√
3

1 +
3
√
−2
√

3 + 2
√

5
.

Proof. For (i), it is enough to find the value of h5,9 by (1.2). Letting
n = 1 in (2.2) and then putting h5,1 = 1, we find that

h4
5,9 + (3−

√
5 )h3

5,9 + (3−
√

5 )h5,9 − 1 = 0.

Solving the above equation for h5,9 and then using h5,9 > 0, we de-

duce that h5,9 =
1 +
√

3√
3 +
√

5
, where we utilized Mathematica. Hence we

complete the proof of (i).
For (ii), setting n = 5 in (2.3) and putting the value of h9,5 obtained

from (i), we find that

(1 + 2
√

3 + 2
√

5 )h3
9,45 − 3

√
3h2

9,45 + 9h9,45 − 3
√

3 = 0.

Utilizing Mathematica to solve the last equation for h9,45 and then using
h9,45 > 0, we have completed the proof of (ii).
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The proof of (iii) is similar to that of (ii) and the proofs of (iv)–(vi)
are clear by (1.1).

See [13, Theorem 4.15(i)] for an alternative proof of Theorem 2.5(i).
We now turn to the evaluations of h′9,n for n = 3, 5, 27, 45, 1

3
, 1
5
, 9
5
, 5
9
, 1
27

,

and 1
45

. But first we need the following theta function identity involving

h9,n and h′9,n that comes from a modular equation
P

Q
+

Q

P
+ 2 = Q+

3

Q
,

where P = ϕ(q)
ϕ(q9)

and Q = ϕ(−q2)
ϕ(−q18) in [14, Theorem 3.3].

Lemma 2.6 ([14], Corollary 3.4). For any n, we have

(2.4)
√

3

(
h′9,n +

1

h′9,n

)
=

h9,n

h′9,n
+

h′9,n
h9,n

+ 2 .

We first evaluate h′9, n for n = 3, 27, 1
3
, and 1

27
.

Theorem 2.7. We have

(i) h′9,3 =
(2 + 3

√
4 )(1−

√
3 + 3
√

2 )

2
√

3
,

(ii) h′9,27 =
−2− 3

√
2 + 3
√

4 + 3
√

36− 35/6 + 3

√
9(−1 + 3

√
2 )2

3
√

2− 2 3
√

3 + 3
√

4
,

(iii) h′
9, 1

3

=
1−
√

3 + 3
√

2√
3 3
√

2
,

(iv) h′
9, 1

27

=
1√
3

+
1−

√
3 + 2 3

√
2 + 2 3

√
4

31/6( 3
√

2 + 3
√

4 )
.

Proof. For (i), letting n = 3 in (2.4) and then putting the value of
h9,3 in Theorem 2.4(i), we find that

(1 +
3
√

2 )(2− 3
√

2 )h′29,3 − 2
√

3 (1 +
3
√

2 )h′9,3 + 3
3
√

2 = 0.

Using Mathematica to solve the above equation for h′9,3 and then using
h′9,3 < 1, we complete the proof of (i). The proofs of (ii)–(iv) are similar
to that of (i).

We next evaluate h′9, n for n = 5, 45, 1
5
, 9

5
, 5

9
, and 1

45
.

Theorem 2.8. We have

(i) h′9,5 =
1

4
(1 +

√
3 )
(

3 +
√

5−
√

6 + 6
√

5
)
,
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(ii) h′9,45 =

√
3

3
√

2
√

3 + 2
√

5

1 +
√

1 + 2
√

3 + 2
√

5 +
3
√

2
√

3 + 2
√

5
,

(iii) h′
9, 5

9

=
1√
3

(
1 +

1−
√

1− 2
√

3 + 2
√

5
3
√
−2
√

3 + 2
√

5

)
,

(iv) h′
9, 1

5

=
1 +
√

3 + (3−
√

15 )
√
−1 + 2

√
3 + 2

√
5

(2 +
√

3 )(3−
√

5 )
,

(v) h′
9, 1

45

=
1√
3

(
1 +

1−
√

1 + 2
√

3 + 2
√

5
3
√

2
√

3 + 2
√

5

)
,

(vi) h′
9, 9

5

=

√
3

3
√
−2
√

3 + 2
√

5

1 +
√

1− 2
√

3 + 2
√

5 +
3
√
−2
√

3 + 2
√

5
.

Proof. For (i), let n = 5 in (2.4) and then put the value of h9,5 in
Theorem 2.5(i), then we deduce that

(3−
√

5 )h′29,5 − 2(1 +
√

3 )h′9,5 + (2 +
√

3 )(3−
√

5 ) = 0.

Employing Mathematica to solve the above equation for h′9,5 and then
using h′9,3 < 1, we complete the proof of (i). The proofs of (ii)–(iv) are
similar to that of (i).

We evaluate some more values of h9,n and h′9,n by utilizing the follow-
ing two theta function identities involving h′9,n, h′9,n

4
, and h9,n.

Lemma 2.9 ([9], Corollary 3.2). For any n, we have

(2.5)
√

3

(
h′9,n +

1

h′9,n

)
=

h′9,n/4
h′9,n

+
h′9,n
h′9,n/4

+ 2.

Note that (2.5) follows from a modular equation
P

Q
+
Q

P
+2 = Q+

3

Q
,

where P = ϕ(−q)
ϕ(−q9) and Q = ϕ(−q2)

ϕ(−q18) in [9, Theorem 3.1].

Lemma 2.10 ([14], Corollary 3.2). For any n, we have

(2.6)
√

3h9,nh′9,n/4 +

√
3

h9,nh′9,n/4
=

√
h9,n

h′9,n/4
+

√
h′9,n/4
h9,n

+ 2 .

Note that (2.6) follows from the modular equation in [14, Theorem

3.1] such as
√
PQ +

3√
PQ

=

√
Q

P
+

√
P

Q
+ 2, where P = ϕ(q)

ϕ(q9)
and
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Q = ϕ(−q)
ϕ(−q9) . We establish the evaluations of h′9,n for n = 12, 108, 4

3
, 3

4
,

27
4

, 1
12

, 4
27

, and 1
108

.

Theorem 2.11. We have

(i) h′9,12 =

√
3
(

1−
√

3
√

2 + 3
√

4−
√

3
)

2− 3
√

5 + 3
√

3
,

(ii) h′
9, 3

4

= −4− 3 3
√

2− 2 3
√

4 +
7 + 5 3

√
2 + 4 3

√
4√

3
,

(iii) h′9,108 =
a−

√√
3 a(1−

√
3 a + a2 )

−1 +
√

3 a
,

(iv) h′
9, 27

4

=

√
3
(

4 + 2 3
√

2 + 3
√

4 + 2 3
√

9− 2 3
√

9
√

3 + 2 3
√

2 + 2 3
√

4
)

( 3
√

2 + 3
√

4− 2 3
√

3 )2
,

(v) h′
9, 4

3

=
1

21/6
+

1√
3
− 1 +

√
3√

3 3
√

4
,

(vi) h′
9, 1

12

= − 3
√

2 +
1 + 3
√

2√
3

,

(vii) h′
9, 4

27

=
1√
3

+

( 3
√

2 + 3
√

4 )

(
1−

√
2 + 2 3

√
2−

√
3 + 6 3

√
2 + 6 3

√
4

)
35/6

(
1−

√
3 + 2 3

√
2 + 2 3

√
4
) ,

(viii) h′
9, 1

108

=
4(1− 3

√
2 + 3
√

3 )− 2( 3
√

4 + 3
√

6 ) + 3
√

9

3(31/6 + 3
√

6 ) + 35/6(2− 3
√

2 )
,

where

a =
−2− 3

√
2 + 3
√

4 + 3
√

36− 35/6 + 3

√
9(−1 + 3

√
2 )2

3
√

2 + 3
√

4− 2 3
√

3
.

Proof. For (i), let n = 12 in (2.5) and put the value h′9,3 in Theorem
2.7(i), then we find that

2

(
−2 +

3

√
5 + 3

√
3

)
h′29,12 +4

√
3h′9,12 +(2+

3
√

4 )(1−
√

3+
3
√

2 )−6 = 0.

Using Mathematica to solve the above equation for h′9,12 and then using
h′9,12 > 0, we complete the proof of (i).
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For (ii), let n = 3 in (2.6) and then put the value h9,3 in Theorem
2.4(i), then we find that

(2− 3
√

2 )h′
9, 3

4
− 2

√√
3 (1 +

3
√

2 )h′
9, 3

4

+
√

3
3
√

2 = 0.

Employing Mathematica to solve the above equation for h′
9, 3

4

and then

using h′
9, 3

4

< 1, we see that we complete the proof of (ii). For the proofs

of (iii)–(viii), either apply (2.5) and Theorem 2.7 or apply (2.6) and
Theorem 2.4, and repeat the same arguments as in the proofs of (i) and
(ii).

We end this section by evaluating h′9,n for n = 20, 180, 5
4
, 45

4
, 4

5
, 36

5
,

20
9

, 1
20

, 9
20

, 5
36

, 4
45

, and 1
180

.

Theorem 2.12. We have

(i) h′9,20 =

(1 +
√

3 )

(
2−

√
6 + 6

√
5− 6

√
2 + 2

√
5

)
3 + 2

√
3−
√

5−
√

6 + 6
√

5
,

(ii) h′
9, 5

4

=
(1 +

√
3 )(5 + 3

√
5 )

−2(
√

3 +
√

5 )
−

√
−6 + 12

√
3 + 12

√
5

47− 21
√

5
,

(iii) h′9,180 =
−
√

3 b

1− 2b +
√

1 + b3

(
1−

√
2 + 2b2 + b3 + 2

√
1 + b3

b(1 + b +
√

1 + b3)
− 1

)
,

(iv) h′
9, 45

4

=
6 + 6b2 + 3b3 + 6

√
1 + b3 − 6

√
(2− b3)

√
1 + b3 +

√
5 b3

2
√

3(1 + b +
√

1 + b3 )2
,

(v) h′
9, 20

9

=
1√
3

+
2− 2

√
4 +
√

3 +
√

5−
√

17 + 4
√

3 + 8
√

5 + 2
√

15
√

3
3
√

2
√

3 + 2
√

5
(

1−
√

1− 2
√

3 + 2
√

5
) ,

(vi) h′
9, 5

36

=
1 +

3
√

4 +
√

15
(

1−
√

1− 2
√

3 + 2
√

5
)

√
3

,

(vii) h′
9, 4

5

=
−4 + 2

√
6 + 6

√
5 + 6

√
2 + 2

√
5

3−
√

3 +
√

5 +
√

15 + 2
√

3(2 +
√

3 )(1 +
√

5 )
,

(viii) h′
9, 1

20

=
(−1 +

√
3 )(5 + 3

√
5 )

2
√

3 + 2
√

5
−

√
−6− 12

√
3 + 12

√
5

47− 21
√

5
,
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(ix) h′
9, 4

45

=
1√
3

+
b3/2 −

√
4 + 4b3 − (4 + b3)

√
1 + b3

√
3b (1−

√
1 + b3 )

,

(x) h′
9, 1

180

=
1√
3

+
1−

√
1 + 2

√
3 + 2

√
5

√
3

3
√

4 +
√

15
,

(xi) h′
9, 36

5

=
2
√

3 b

4b− b2 −
√

8b + b4

(
1−

√
1− 8b− 2b2 − 2

√
8b + b4

4b− b3 + b
√

8b + b4

)
,

(xii) h′
9, 9

20

=

√
3
(

2− 2
√

1− 2
√

3 + 2
√

5 +
3
√

4−
√

15
)

(
2− 3

√
−2
√

3 + 2
√

5
)2 ,

where

b =
3

√
2
√

3 + 2
√

5.

Proof. For (i), let n = 20 in (2.5) and put the value of h′9,5 in Theorem
2.8(i), then we deduce that

h′29,20 −
3 + 2

√
3−
√

5−
√

6 + 6
√

5

2 +
√

3−
√

15
h′9,20 +

2 + 2
√
−6 + 3

√
5

1 +
√

3− 3
√

5 +
√

15
= 0.

Employing Mathematica to solve the above equation for h′9,20 and then
using h′9,12 > 0, we complete the proof of (i).

For (ii)–(xii), repeat the same argument as in the proof of (i) by either
applying (2.5) and Theorem 2.8 or applying (2.6) and Theorem 2.5.

3. Evaluations of G(q)

In this section, we establish the explicit evaluations of the cubic con-
tinued fraction. We explicitly evaluate 25 new values of G(e−π

√
n) and

11 new values of G(−e−π
√
n) for some n. We first evaluate G(e−π

√
n) for

n = 12, 108, 4
3
, and 4

27
.

Theorem 3.1. We have

(i) G(e−2
√
3π) =

1

2
− 1

4
(2 + 3

√
4 )(1−

√
3 + 3
√

2 ),

(ii) G(e−6
√
3π)

=
1

2
+

√
3

(
2 + 3
√

2− 3
√

4− 3
√

36 + 35/6 − 3

√
9( 3
√

2− 1)2
)

2( 3
√

2 + 3
√

4− 2 3
√

3 )
,
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(iii) G(e−2π/
√
3) =

3
√
−5 + 3

√
3

2
,

(iv) G(e−2π/3
√
3) =

3
√

3
(
−1 +

√
3 + 2 3

√
2 + 2 3

√
4
)

2( 3
√

2 + 3
√

4 )
,

Proof. The proofs are clear by (1.3) and Theorem 2.7.

See [12, Theorem 6.3.7(ii)] and [8, Theorem 5.1(i)] for alternative
proofs of Theorem 3.1(i) and (iii), respectively.

We now evaluate G(e−π
√
n) for n = 20, 180, 4

5
, 36

5
, 20

9
, and 4

45
.

Theorem 3.2. We have

(i) G(e−2
√
5π) =

√
3 +
√

5− 3(1 +
√

3 )
√
−2 +

√
5

2(−3 +
√

5 )
,

(ii) G(e−6
√
5π) =

1

2
− 3

3
√

2
√

3 + 2
√

5

2
(

1 +
√

1 + 2
√

3 + 2
√

5 +
3
√

2
√

3 + 2
√

5
) ,

(iii) G(e−2
√
5π/3) =

−1 +
√

1− 2
√

3 + 2
√

5

2
3
√
−2
√

3 + 2
√

5
,

(iv) G(e−2π/
√
5) =

1 +

√
9 + 6

√
5− 6

√
6 + 3

√
5

2(1 +
√

3 )
,

(v) G(e−2π/3
√
5) =

−1 +
√

1 + 2
√

3 + 2
√

5

2
3
√

2
√

3 + 2
√

5
,

(vi) G(e−6π/
√
5) =

1

2
− 3

3
√
−2
√

3 + 2
√

5

2
(

1 +
√

1− 2
√

3 + 2
√

5 +
3
√
−2
√

3 + 2
√

5
) .

Proof. The results follow from (1.3) and Theorem 2.8.

We now find G(e−π
√
n) for n = 3, 27, 48, 80, 432, 1

3
, 16

3
, 1

27
, and 16

27
.

Theorem 3.3. We have

(i) G(e−
√
3π) =

1

2

(
−6− 5 3

√
2− 4 3

√
4 +
√

3 (4 + 3 3
√

2 + 2 3
√

4 )
)
,

(ii) G(e−3
√
3π)

=
1

2
−

3
(

4 + 2 3
√

2 + 3
√

4 + 2 3
√

9− 2 3
√

9
√

3 + 2 3
√

2 + 2 3
√

4
)

2( 3
√

2 + 3
√

4− 2 3
√

3 )2
,
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(iii) G(e−4
√
3π) =

1

2
−

3
(

1−
√

3
√

2 + 3
√

4−
√

3
)

2
(

2− 3
√

5 + 3
√

3
) ,

(iv) G(e−12
√
3π) =

1−
√

3
√

3 a(1−
√

3 a + a2 )

2− 2
√

3 a
,

(v) G(e−π/
√
3) =

−1 +
√

3
3
√

4
,

(vi) G(e−4π/
√
3) =

1 +
√

3−
√

6

2 3
√

4
,

(vii) G(e−π/3
√
3) = − 1

3
√

3
+

3

√
5 + 3

√
3

6
,

(viii) G(e−4π/3
√
3) =

(1 + 3
√

2 )

(
1−

√
2 + 2 3

√
2−

√
3 + 6 3

√
2 + 6 3

√
4

)
3
√

12
(
−1 +

√
3 + 2 3

√
2 + 2 3

√
4
) ,

where

a =
−2− 3

√
2 + 3
√

4 + 3
√

36− 35/6 + 3

√
9(−1 + 3

√
2 )2

3
√

2 + 3
√

4− 2 3
√

3
.

Proof. The results are immediate consequences of (1.3) and Theorem
2.11.

See [12, Theorem 6.3.3(i)], [12, Theorem 6.3.3(vi)], and [8, Theorem
5.1(ii)] for alternative proofs of Theorem 3.3(i), (v), and (vi), respec-
tively. We further evaluate G(e−π

√
n) for n = 5, 45, 80, 720, 1

5
, 9

5
, 16

5
,

144
5

, 5
9
, 80

9
, 1

45
, and 16

45
.

Theorem 3.4. We have

(i) G(e−
√
5π) =

1

2
+

(3 +
√

3 )(5 + 3
√

5 )

4(
√

3−
√

5 )
+ 3

√
−1 + 2

√
3 + 2

√
5

94− 42
√

5
,

(ii) G(e−3
√
5π)

=
1

2
−

3
(
2 + 2b2 + b3 + 2

√
1 + b3

)
4(1 + b +

√
1 + b3 )2

+
3
√

(2− b3)
√

1 + b3 +
√

5 b3

2(1 + b +
√

1 + b3 )2
,
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(iii) G(e−4
√
5π) =

1

2
−

(3 +
√

3 )

(
2−

√
6 + 6

√
5− 6

√
2 + 2

√
5

)
2
(

3 + 2
√

3−
√

5−
√

6 + 6
√

5
) ,

(iv) G(e−12
√
5π)

=
1

2
+

3b

2− 4b + 2
√

1 + b3

(
1−

√
2 + 2b2 + b3 + 2

√
1 + b3

b(1 + b +
√

1 + b3)
− 1

)
,

(v) G(e−π/
√
5) =

1

2
− (3−

√
3 )(5 + 3

√
5 )

4(
√

3 +
√

5 )
+

3

2

√
−2− 4

√
3 + 4

√
5

47− 21
√

5
,

(vi) G(e−3π/
√
5) =

1

2
−

3
(

1−
√

1− 2
√

3 + 2
√

5 +
3
√

4−
√

15
)

(
2− 3

√
−2
√

3 + 2
√

5
)2 ,

(vii) G(e−4π/
√
5) =

1

2
+

2
√

3− 3

√
2 + 2

√
5 + 2

√
2 + 2

√
5

3−
√

3 +
√

5 +
√

15 + 2
√

3(2 +
√

3 )(1 +
√

5 )
,

(viii) G(e−12π/
√
5)

=
1

2
− 3b

4b− b2 −
√

8b + b4

(
1−

√
1− 8b− 2b2 − 2

√
8b + b4

4b− b3 + b
√

8b + b4

)
,

(ix) G(e−
√
5π/3) =

3
√

4 +
√

15

2

(√
1− 2

√
3 + 2

√
5− 1

)
,

(x) G(e−4
√
5π/3) =

√
4 +
√

3 +
√

5−
√

17 + 4
√

3 + 8
√

5 + 2
√

15− 1(√
−2
√

3 + 2
√

5
)

3
√

2
√

3 + 2
√

5
,

(xi) G(e−π/3
√
5) =

√
1 + 2

√
3 + 2

√
5− 1

2
3
√

4 +
√

15
,

(xii) G(e−4π/3
√
5) =

√
4b + 4b4 − (4b + b4)

√
1 + b3 − b2

2b(1−
√

1 + b3 )
,

where

b =
3

√
2
√

3 + 2
√

5 .

Proof. The proofs are straightforward by (1.3) and Theorem 2.12.

We turn to the evaluations of G(−e−π
√
n) for n = 3, 27, 1

3
, and 1

27
.



1056 J. Yi and D. H. Paek

Theorem 3.5. We have

(i) G(−e−
√
3π) =

1

2
− 3

2(1 + 3
√

2 )
,

(ii) G(−e−3
√
3π) =

1

2
− 3 3

√
3

2( 3
√

2 + 3
√

3 + 3
√

4 )
,

(iii) G(−e−π/
√
3) = − 1

3
√

4
,

(iv) G(−e−π/3
√
3) = −1 + 3

√
2

3
√

12
.

Proof. The results follow directly from (1.4) and Theorem 2.4.

See [12, Theorem 6.3.5(ii) and (vi)] and [1, Theorem 5.6(iv) and (iii)]
for different proofs of Theorem 3.5(i) and (iii), respectively. See also
[1, Theorem 5.6(v)] for a different proof of Theorem 3.5(iv). We now
evaluate G(−e−π

√
n) for n = 5, 45, 1

5
, 9

5
, 5

9
, and 1

45
.

Theorem 3.6. We have

(i) G(−e−
√
5π) =

−3 +
√

5

2(
√

3 +
√

5 )
,

(ii) G(−e−3
√
5π) =

1

2
−

3
(

1− 3
√

2
√

3 + 2
√

5 + 2
3
√

4 +
√

15
)

2(1 + 2
√

3 + 2
√

5 )
,

(iii) G(−e−π/
√
5) =

−2 +
√

3−
√

15

2(1 +
√

3 )
,

(iv) G(−e−3π/
√
5) =

1

2
− 3

2
(

1 +
3
√
−2
√

3 + 2
√

5
) ,

(v) G(−e−
√
5π/3) = −

3
√
−
√

3 +
√

5
3
√

4
,

(vi) G(−e−π/3
√
5) = −

3
√√

3 +
√

5
3
√

4
.

Proof. The results follow from (1.4) and Theorem 2.5.

See [1, Theorem 5.6(i) and (ii)] for different proofs of Theorem 3.6(i)
and (iii). We close this section by evaluating G(−e−π

√
n) for n = 20,

180, 4
5
, 36

5
, 20

9
, and 4

45
.

Theorem 3.7. We have
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(i) G(−e−2
√
5π) =

3−
√

5
√

3 +
√

5− 3(1 +
√

3 )
√
−2 +

√
5

×

1−
(3 +

√
3 )

(
2−

√
6 + 6

√
5− 6

√
2 + 2

√
5

)
3 + 2

√
3−
√

5−
√

6 + 6
√

5

 ,

(ii) G(−e−6
√
5π) = − 1 + b +

√
1 + b3

(1− 2b +
√

1 + b3 )2

×

(
1 + b +

√
1 + b3 − 3b

√
−1 +

2 + 2b2 + b3 + 2
√

1 + b3

b(1 + b +
√

1 + b3)

)
,

(iii) G(−e−2π/
√
5) = − 1 +

√
3

1 +

√
9 + 6

√
5− 6

√
6 + 2

√
5

×

1 +
4
√

3− 6

√
2 + 2

√
5 + 2

√
2 + 2

√
5

3−
√

3 +
√

5 +
√

15 + 2
√

3(2 +
√

3 )(1 +
√

5 )

 ,

(iv) G(−e−6π/
√
5) =

2b + b2 +
√

8b + b4

4b− b2 −
√

8b + b4

×

(
1− 6b

4b− b2 −
√

8b + b4

(
1−

√
1− 8b− 2b2 − 2

√
8b + b4

4b− b3 + b
√

8b + b4

))
,

(v) G(−e−2
√
5π/3)

=
2

√
4 +
√

3 +
√

5−
√

17 + 4
√

3 + 8
√

5 + 2
√

15− 2

3
√

4 +
√

15
(

1−
√
−2
√

3 + 2
√

5
)2 ,

(vi) G(−e−2π/3
√
5) =

√
4b + 4b4 − (4b + b4)

√
1 + b3 )− b2

(1−
√

1 + b3 )2
,

where

b =
3

√
2
√

3 + 2
√

5.

Proof. For (i), let n = 20 in G(e−2π
√
n) = −G(e−π

√
n)G(−e−π

√
n)

in [12, Lemma 6.3.6] and put the values of G(e−4
√
5π) and G(e−2

√
5π)

in Theorems 3.4(iii) and 3.2(i), respectively, then we have the desired
result. The proofs of (ii)–(vi) are similar to that of (i).
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