FUZZY CONNECTIONS ON ADJOINT TRIPLES

Jung Mi Ko and Yong Chan Kim*

Abstract

In this paper, we introduce the notion of residuated and Galois connections on adjoint triples and investigate their properties. Using the properties of residuated and Galois connections, we solve fuzzy relation equations and give their examples.

1. Introduction

Ward et al.[19] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool as algebraic structures for many valued logics $[2,6-10,18]$. Pawlak [11,12] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. For an extension of classical rough sets, many researchers [2,9,10] developed L-lower and L-upper approximation operators in complete residuated lattices.

Abdel-Hamid [1] introduced the notion of adjoint triples. By using this concepts, Medina et al.[3-5] developed information systems and decision rules. Sanchez [15] introduced the theory of fuzzy relation equations with various types of composition: max-min, min-max, min- α. Fuzzy

[^0]relation equations with new types of composition(continuous t-norm [16], residuated lattice [13,14]) is developed.

In this paper, we show that there exists the residuated connection between fuzzy relational erosion and fuzzy relational dilation on adjoint triples. Moreover, we study residuated and Galois connections on adjoint triples and investigate their properties. Using the properties of residuated and Galois connections, we solve fuzzy relation equations and give their examples.

2. Preliminaries

Definition 2.1. [2,9,17] Let X and Y be sets. Let $\left(P_{1}, \leq_{1}\right)$ and $\left(P_{2}, \leq_{2}\right)$ be posets. Let $\delta, \gamma: P_{1}^{X} \rightarrow P_{2}^{Y}$ and $\epsilon, \rho: P_{2}^{Y} \rightarrow P_{1}^{X}$.
(1) $\left(P_{1}^{X}, \delta, \epsilon, P_{2}^{Y}\right)$ is called a residuated connection if $\delta(f) \leq_{2} g$ iff $f \leq_{1} \epsilon(g)$ for all $f \in P_{1}^{X}, g \in P_{2}^{Y}$.
(2) $\left(P_{1}^{X}, \gamma, \rho, P_{2}^{Y}\right)$ is called a Galois connection if $g \leq_{2} \gamma(f)$ iff $f \leq_{1}$ $\rho(g)$ for all $f \in P_{1}^{X}, g \in P_{2}^{Y}$.

Definition 2.2.[2] Let X be a set and (P, \leq) be a poset. An operator $C: P^{X} \rightarrow P^{X}$ is called a fuzzy closure operator on X if it satisfies the following conditions:
(C1) $f \leq C(f)$ and $C(C(f)) \leq C(f)$, for all $f \in P^{X}$.
(C2) If $f \leq g$, then $C(f) \leq C(g)$ for all $f, g \in P^{X}$.
An operator $I: P^{X} \rightarrow P^{X}$ is called a fuzzy interior operator on X if it satisfies the conditions
(I1) $I(f) \leq f$ and $I(f) \leq I(I(f))$ for all $f \in P^{X}$,
(I2) If $f \leq g$, then $I(f) \leq I(g)$ for all $f, g \in P^{X}$.

Definition 2.3. [3-5] Let $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right),\left(P_{3}, \leq_{3}\right)$ be posets. We say that the mappings \& : $P_{1} \times P_{2} \rightarrow P_{3}, \rightarrow: P_{2} \times P_{3} \rightarrow P_{1}$ and $\Rightarrow: P_{1} \times P_{3} \rightarrow P_{2}$ is called an adjoint triple if it satisfies the following conditions:
$x \leq_{1}(y \rightarrow z)$ iff $x \& y \leq_{3} z$ iff $y \leq_{2}(x \Rightarrow z)$ for $x \in P_{1}, y \in P_{2}, z \in P_{3}$.
Example 2.4. Let $[0,1]_{m}$ be a regular partition of $[0,1]$ in m pieces with $[0,1]_{m}=\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, \frac{m-1}{m}, 1\right\}$. A discretization of a t-norm T :
$[0,1] \times[0,1] \rightarrow[0,1]$ is the operator $T^{0}:[0,1]_{m} \times[0,1]_{n} \rightarrow[0,1]_{k}$ defined as

$$
T^{0}(x, y)=\frac{[k T(x, y)]}{k}
$$

where $[x]=\bigwedge\{n \in Z \mid x \leq n\}$ is the ceiling function. For this operator, the corresponding implication operators $\rightarrow^{0}:[0,1]_{n} \times[0,1]_{k} \rightarrow[0,1]_{m}$ and $\Rightarrow^{0}:[0,1]_{m} \times[0,1]_{k} \rightarrow[0,1]_{n}$ defined as

$$
y \rightarrow^{0} z=\frac{<m(y \rightarrow z)>}{m}, x \Rightarrow^{0} z=\frac{\langle n(x \rightarrow z)>}{n}
$$

where $\langle x\rangle=\bigvee\{n \in Z \mid n \leq x\}$ is the floor function.
Let $x \leq y \rightarrow^{0} z=\frac{\langle m(y \rightarrow z)\rangle}{m}$. Since $x-1 \leq<x>\leq x, x \leq \frac{\langle m(y \rightarrow z)\rangle}{m} \leq$ $\frac{m(y \rightarrow z)}{m}=y \rightarrow z$. Hence $T(x, y) \leq z$. Since $x \leq[x]<x+1$,

$$
T^{0}(x, y)=\frac{[k T(x, y)]}{k}<\frac{k T(x, y)+1}{k} \leq \frac{z+1}{k} .
$$

Hence $T^{0}(x, y)=\frac{[k T(x, y)]}{k} \leq z$.
Let $T^{0}(x, y)=\frac{[k T(x, y)]}{k} \leq z$. Since $k T(x, y) \leq[k T(x, y)], T(x, y) \leq z$ iff $y \leq x \rightarrow z$. Hence

$$
x \Rightarrow^{0} z=\frac{<n(x \rightarrow z)>}{n}>\frac{<n(x \rightarrow z)>}{n} \geq y
$$

Other cases are similarly proved.

3. Fuzzy connections on adjoint triples

Lemma 3.1. Let P_{i} be complete lattices for $i \in\{1,2,3\}$. Let $(\&, \rightarrow, \Rightarrow$) be an adjoint triple with respect to $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right),\left(P_{3}, \leq_{3}\right)$. Then the following properties hold.
(1) If $x_{1} \leq_{1} x_{2}$, then $x_{1} \& y \leq_{3} x_{2} \& y$.
(2) If $y_{1} \leq_{2} y_{2}$, then $x \& y_{1} \leq_{3} x \& y_{2}$.
(3) \rightarrow, \Rightarrow are order-preserving on the second argument and orderreversing on the first argument.
(4) $y \leq_{2}(x \Rightarrow(x \& y)), x \leq_{1}(y \rightarrow(x \& y))$.
(5) $x \&(x \Rightarrow z) \leq_{3} z,(y \rightarrow z) \& y \leq_{3} z$.
(6) $y \leq_{2}((y \rightarrow z) \Rightarrow z), x \leq_{1}((x \Rightarrow z) \rightarrow z)$.
(7) $\left(\bigvee_{i} x_{i}\right) \& y=\bigvee_{i}\left(x \& y_{i}\right)$ and $x \&\left(\bigvee_{i} y_{i}\right)=\bigvee_{i}\left(x \& y_{i}\right)$.
(8) $x \Rightarrow\left(\bigwedge_{i} z_{i}\right)=\bigwedge_{i}\left(x \rightarrow z_{i}\right)$ and $\left(\bigvee_{i} x_{i}\right) \Rightarrow z=\bigwedge_{i}\left(x_{i} \Rightarrow z\right)$.
(9) $y \rightarrow\left(\bigwedge_{i} z_{i}\right)=\bigwedge_{i}\left(y \rightarrow z_{i}\right)$ and $\left(\bigvee_{i} y_{i}\right) \rightarrow z=\bigwedge_{i}\left(y_{i} \rightarrow z\right)$.

Proof. (1) Since $x_{1} \leq_{1} x_{2} \leq_{1}\left(y \rightarrow x_{2} \& y\right), x_{1} \& y \leq_{3} x_{2} \& y$.
(2) Since $y_{1} \leq_{2} y_{2} \leq_{2}\left(y \Rightarrow x \& y_{2}\right), x \& y_{1} \leq_{3} x \& y_{2}$.
(3) Let $x_{1} \leq_{1} x_{2}$. Since $x_{1} \&\left(x_{2} \Rightarrow z\right) \leq_{3} x_{2} \&\left(x_{2} \Rightarrow z\right) \leq_{3} z,\left(x_{2} \Rightarrow\right.$ $z) \leq_{2}\left(x_{1} \Rightarrow z\right)$.

Let $z_{1} \leq_{3} z_{2}$. Since $\left(x \rightarrow z_{1}\right) \& x \leq_{3} z_{1} \leq_{3} z_{2},\left(x \rightarrow z_{1}\right) \leq_{1}\left(x \rightarrow z_{2}\right)$.
Other cases are similarly proved.
(4) It follows $x \& y \leq_{3} x \& y$.
(5) It follows $(x \Rightarrow z) \leq_{2}(x \Rightarrow z)$ iff $x \&(x \Rightarrow z) \leq_{3} z$. Moreover, $(y \rightarrow z) \leq_{1}(y \rightarrow z)$ iff $(y \rightarrow z) \& y \leq_{3} z$.
(6) $\operatorname{By}(5),(y \rightarrow z) \& y \leq_{3} z$ iff $y \leq_{2}((y \rightarrow z) \Rightarrow z)$. Moreover, $x \&(x \Rightarrow$ $z) \leq_{3} z$ iff $x \leq_{1}((x \Rightarrow z) \rightarrow z)$.
(7) By (1), $\left(\bigvee_{i} x_{i}\right) \& y \geq_{3} \bigvee_{i}\left(x \& y_{i}\right)$. Since $x_{i} \leq_{2}\left(y \rightarrow x_{i} \& y\right) \leq_{2}(y \rightarrow$ $\left.\bigvee_{i}\left(x_{i} \& y\right)\right), \bigvee_{i} x_{i} \leq_{2}\left(y \rightarrow \bigvee_{i}\left(x_{i} \& y\right)\right)$ iff $\left(\bigvee_{i} x_{i}\right) \& y \leq_{3} \bigvee_{i}\left(x \& y_{i}\right)$.
(8) By (3), $x \Rightarrow\left(\bigwedge_{i} z_{i}\right) \leq_{2} \bigwedge_{i}\left(x \Rightarrow z_{i}\right)$. Since $x \&\left(\bigwedge_{i}\left(x \Rightarrow z_{i}\right)\right) \leq_{3}$ $x \&\left(x \Rightarrow z_{i}\right) \leq_{3} z_{i}$, then $x \&\left(\bigwedge_{i}\left(x \Rightarrow z_{i}\right)\right) \leq_{3} \bigwedge_{i}\left(x \&\left(x \Rightarrow z_{i}\right)\right) \leq_{3} \bigwedge_{i} z_{i}$. Thus $\bigwedge_{i}\left(x \Rightarrow z_{i}\right) \leq_{2} x \Rightarrow\left(\bigwedge_{i} z_{i}\right)$.

Moreover, by (3), $\left(\bigvee_{i} x_{i}\right) \Rightarrow z \leq_{2} \bigwedge_{i}\left(x_{i} \Rightarrow z\right)$. Since $\left(\bigvee_{i} x_{i}\right) \& \bigwedge_{i}\left(x_{i} \Rightarrow\right.$ $z) \leq_{3}\left(\bigvee_{i} x_{i}\right) \&\left(x_{i} \Rightarrow z\right)=\bigvee_{i}\left(x_{i} \&\left(x_{i} \Rightarrow z\right)\right) \leq_{3} z$, then $\bigwedge_{i}\left(x_{i} \Rightarrow z\right) \leq_{2}$ $\left(\bigvee_{i} x_{i}\right) \Rightarrow z$.

Definition 3.2. [5] Let X, Y be sets and P_{i} be complete lattices. Let $(\&, \rightarrow, \Rightarrow)$ be an adjoint triple with respect to $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right)$, $\left(P_{3}, \leq_{3}\right)$.
(1) The fuzzy relational erosion with respect to $R \in P_{1}^{X \times Y}, \epsilon_{R}: P_{3}^{X} \rightarrow$ P_{2}^{Y} is defined as

$$
\epsilon_{R}(f)(y)=\bigwedge_{x \in X}(R(x, y) \Rightarrow f(x))
$$

(2) The fuzzy relational dilation with respect to $R, \delta_{R}: P_{2}^{Y} \rightarrow P_{3}^{X}$ is defined as

$$
\delta_{R}(g)(x)=\bigvee_{y \in Y}(R(x, y) \& g(y))
$$

(3) The fuzzy relational property-oriented erosion with respect to R, $\epsilon_{R_{p}}: P_{3}^{Y} \rightarrow P_{1}^{X}$ is defined as

$$
\epsilon_{R_{p}}(g)(x)=\bigwedge_{y \in Y}(R(x, y) \rightarrow g(y)) .
$$

(4) The fuzzy relational property-oriented dilation with respect to R, $\delta_{R_{p}}: P_{1}^{X} \rightarrow P_{3}^{Y}$ is defined as

$$
\delta_{R_{p}}(f)(y)=\bigvee_{x \in X}(f(x) \& R(x, y))
$$

Theorem 3.3. Let X, Y be sets and P_{i} be complete lattices. Let $(\&, \rightarrow, \Rightarrow)$ be an adjoint triple with respect to $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right),\left(P_{3}, \leq_{3}\right.$). Then the following properties hold.
(1) $\left(P_{2}^{Y}, \delta_{R}, \epsilon_{R}, P_{2}^{Y}\right)$ is a residuated connection.
(2) $\delta_{R}\left(\epsilon_{R}(f)\right) \leq_{3} f$ iff $g \leq_{2} \epsilon_{R}\left(\delta_{R}(g)\right)$ for all $f \in P_{3}^{X}, g \in P_{2}^{Y}$.
(3) If $f_{1} \leq_{3} f_{2}$ and $g_{1} \leq_{2} g_{2}$, for all $f_{1}, f_{2} \in P_{3}^{X}, g_{1}, g_{2} \in P_{2}^{Y}$,

$$
\epsilon_{R}\left(f_{1}\right) \leq_{2} \epsilon_{R}\left(f_{2}\right), \delta_{R}\left(g_{1}\right) \leq_{3} \delta_{R}\left(g_{2}\right)
$$

(4) $\bigvee_{i \in \Gamma} \delta_{R}\left(g_{i}\right)=\delta_{R}\left(\bigvee_{i \in \Gamma} g_{i}\right)$ for all $g_{i} \in P_{2}^{Y}$.
(5) $\bigwedge_{i \in \Gamma} \epsilon_{R}\left(f_{i}\right)=\epsilon_{R}\left(\bigwedge_{i \in \Gamma} f_{i}\right)$ for all $f_{i} \in P_{3}^{X}$.
(6) $\delta_{R}(g)=\delta_{R}\left(\epsilon_{R}\left(\delta_{R}(g)\right)\right)$ for all $g \in P_{2}^{Y}$. If $g=g_{0}$ is a solution of $\delta_{R}(g)=f$, then $g_{1}=\epsilon_{R}(f)$ is a solution of $\delta_{R}(g)=f$ such that $g_{0} \leq \epsilon_{R}(f)$.
(7) $\epsilon_{R}\left(\delta_{R}\left(\epsilon_{R}(f)\right)\right)=\epsilon_{R}(f)$ for all $f \in P_{3}^{X}$. If $f=f_{1}$ is a solution of $\epsilon_{R}(f)=g$, then $f_{2}=\delta_{R}(g)$ is a solution of $\epsilon_{R}(f)=g$ such that $\delta_{R}(g) \leq f_{1}$.
(8) $\delta_{R} \circ \epsilon_{R}: P_{3}^{X} \rightarrow P_{3}^{X}$ is a fuzzy interior operator.
(9) $\epsilon_{R} \circ \delta_{R}: P_{2}^{Y} \rightarrow P_{2}^{Y}$ is a fuzzy closure operator.

Proof. (1) We show that $\delta_{R}(g) \leq_{3} f$ iff $g \leq_{2} \epsilon_{R}(f)$ for all $f \in P_{3}^{X}, g \in$ P_{2}^{Y}. For $f \in P_{3}^{X}, g \in P_{2}^{Y}, \delta_{R}(g)(x) \leq_{3} f(x)$ iff $\bigvee_{y \in Y}(R(x, y) \& g(y)) \leq_{3}$ $f(x)$ iff $g(y) \leq_{2} \bigwedge_{y \in Y}(R(x, y) \Rightarrow f(x))$ iff $g(y) \leq_{2} \epsilon_{R}(f)(y)$.
(2) For $f \in P_{3}^{X}, g \in P_{2}^{Y}, \delta_{R}(g)(x) \leq_{3} \delta_{R}(g)(x)$ iff $g(y) \leq_{2} \epsilon_{R}\left(\delta_{R}(g)\right)(y)$ and $\epsilon_{R}(f)(y) \leq_{2} \epsilon_{R}(f)(x)$ iff $\delta_{R}\left(\epsilon_{R}(f)\right)(x) \leq_{3} f(x)$.
(3) Since $g_{1}(y) \leq_{2} g_{2}(y) \leq_{2} \epsilon_{R}\left(\delta_{R}\left(g_{2}\right)\right)(y)$, then $\delta_{R}\left(g_{1}\right)(x) \leq \delta_{R}\left(g_{2}\right)(x)$. Moreover, since $\delta_{R}\left(\epsilon_{R}\left(f_{1}\right)\right)(x) \leq_{3} f_{2}(x), \epsilon_{R}\left(f_{1}\right)(y), \epsilon_{R}\left(f_{2}\right)(y)$.
(4) From (3), $\bigvee_{i \in \Gamma} \delta_{R}\left(g_{i}\right) \leq_{3} \delta_{R}\left(\bigvee_{i \in \Gamma} g_{i}\right)$.

Since $g_{i} \leq_{2} \epsilon_{R}\left(\delta_{R}\left(g_{i}\right)\right)$ and $\bigvee_{i \in \Gamma} g_{i} \leq_{2} \epsilon_{R}\left(\bigvee_{i \in \Gamma} \delta_{R}\left(g_{i}\right)\right), \delta_{R}\left(\bigvee_{i \in \Gamma} g_{i}\right) \leq_{3}$ $\bigvee_{i \in \Gamma} \delta_{R}\left(g_{i}\right)$.
(5) From (3), $\epsilon_{R}\left(\bigwedge_{i \in \Gamma} f_{i}\right) \leq_{2} \bigwedge_{i \in \Gamma} \epsilon_{R}\left(f_{i}\right)$.

Since $\delta_{R}\left(\epsilon_{R}\left(f_{i}\right)\right) \leq_{3} f_{i}$ and $\delta_{R}\left(\bigwedge_{i \in \Gamma} \epsilon_{R}\left(f_{i}\right)\right) \leq_{3} \bigwedge_{i \in \Gamma} \delta_{R}\left(\epsilon_{R}\left(f_{i}\right)\right) \leq_{3}$ $\bigwedge_{i \in \Gamma} f_{i}, \bigwedge_{i \in \Gamma} \epsilon_{R}\left(f_{i}\right) \leq_{2} \epsilon_{R}\left(\bigwedge_{i \in \Gamma} f_{i}\right)$.
(6) By (2), $\delta_{R}(g)=\delta_{R}\left(\epsilon_{R}\left(\delta_{R}(g)\right)\right)$ for all $g \in P_{2}^{Y}$. If $\delta_{R}\left(g_{0}\right)=f$, Then $\delta_{R}\left(\epsilon_{R}\left(\delta_{R}\left(g_{0}\right)\right)\right)=\delta_{R}\left(\epsilon_{R}(f)\right)=\delta_{R}\left(g_{0}\right)=f$. Moreover, $g_{0} \leq_{2}$ $\epsilon_{R}\left(\delta_{R}\left(g_{0}\right)\right)=\epsilon_{R}(f)$.
(7) It is similarly proved as (6).
(8) For each $f, f_{1}, f_{2} \in L^{X}, \delta_{R} \circ \epsilon_{R}(f) \leq_{3} f$ and $\left(\delta_{R} \circ \epsilon_{R}\right)\left(\delta_{R} \circ \epsilon_{R}\right)(f)=$ $\delta_{R} \circ \epsilon_{R}(f)$, if $f_{1} \leq_{3} f_{2}$,

$$
\left(\delta_{R} \circ \epsilon_{R}\right)\left(f_{1}\right) \leq_{3}\left(\delta_{R} \circ \epsilon_{R}\right)\left(f_{2}\right)
$$

(9) It is similarly proved as (8).

Corollary 3.4. Let X, Y be sets and P_{i} be complete lattices. Let $(\&, \rightarrow, \Rightarrow)$ be an adjoint triple with respect to $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right),\left(P_{3}, \leq_{3}\right.$). Then the following properties hold.
(1) $\left(P_{1}^{X}, \delta_{R_{p}}, \epsilon_{R_{p}}, P_{3}^{Y}\right)$ is a residuated connection.
(2) $\delta_{R_{p}}\left(\epsilon_{R_{p}}(g) \leq_{3} g\right.$ iff $f \leq_{1} \epsilon_{R_{p}}\left(\delta_{R_{p}}(f)\right)$ for all $f \in P_{1}^{X}, g \in P_{3}^{Y}$.
(3) If $f_{1} \leq_{3} f_{2}$ and $g_{1} \leq_{2} g_{2}$, for all $f_{1}, f_{2} \in P_{1}^{X}, g_{1}, g_{2} \in P_{3}^{Y}$,

$$
\epsilon_{R_{p}}\left(g_{1}\right) \leq_{1} \epsilon_{R_{p}}\left(g_{2}\right), \delta_{R_{p}}\left(f_{1}\right) \leq_{3} \delta_{R_{p}}\left(f_{2}\right) .
$$

(4) $\bigvee_{i \in \Gamma} \delta_{R_{p}}\left(f_{i}\right)=\delta_{R_{p}}\left(\bigvee_{i \in \Gamma} f_{i}\right)$ for all $f_{i} \in P_{1}^{X}$.
(5) $\bigwedge_{i \in \Gamma} \epsilon_{R_{p}}\left(g_{i}\right)=\epsilon_{R_{p}}\left(\bigwedge_{i \in \Gamma} g_{i}\right)$ for all $g_{i} \in P_{3}^{Y}$.
(6) $\delta_{R_{p}}(f)=\delta_{R_{p}}\left(\epsilon_{R_{p}}\left(\delta_{R_{p}}(f)\right)\right)$ for all $f \in P_{1}^{Y}$. If $f=f_{0}$ is a solution of $\delta_{R_{p}}(f)=g$, then $f_{1}=\epsilon_{R_{p}}(g)$ is a solution of $\delta_{R_{p}}(f)=g$ such that $f_{0} \leq_{1} \epsilon_{R_{p}}(g)$.
(7) $\epsilon_{R_{p}}\left(\delta_{R_{p}}\left(\epsilon_{R_{p}}(g)\right)\right)=\epsilon_{R_{p}}(g)$ for all $g \in P_{3}^{Y}$. If $g=g_{1}$ is a solution of $\epsilon_{R_{p}}(g)=f$, then $g_{2}=\delta_{R_{p}}(f)$ is a solution of $\epsilon_{R_{p}}(g)=f$ such that $\delta_{R_{p}}(f) \leq_{3} g_{1}$.
(8) $\delta_{R_{p}} \circ \epsilon_{R_{p}}: P_{3}^{Y} \rightarrow P_{3}^{Y}$ is a fuzzy interior operator.
(9) $\epsilon_{R_{p}} \circ \delta_{R_{p}}: P_{1}^{X} \rightarrow P_{1}^{X}$ is a fuzzy closure operator.

Theorem 3.5. Let X, Y be sets and P_{i} be complete lattices. Let $(\&, \rightarrow, \Rightarrow)$ be an adjoint triple with respect to $\left(P_{1}, \leq_{1}\right),\left(P_{2}, \leq_{2}\right),\left(P_{3}, \leq_{3}\right.$). An operation $\gamma_{R}: P_{1}^{X} \rightarrow P_{2}^{Y}$ is defined as

$$
\gamma_{R}(f)(y)=\bigwedge_{x \in X}(f(x) \Rightarrow R(x, y)) .
$$

An operation $\rho_{R}: P_{2}^{Y} \rightarrow P_{1}^{X}$ is defined as

$$
\rho_{R}(g)(x)=\bigwedge_{y \in Y}(g(y) \rightarrow R(x, y))
$$

Then following properties hold.
(1) $\left(P_{1}^{X}, \gamma_{R}, \rho_{R}, P_{2}^{Y}\right)$ is a Galois connection.
(2) $f \leq_{1} \rho_{R}\left(\gamma_{R}(f)\right)$ and $g \leq_{2} \gamma_{R}\left(\rho_{R}(g)\right)$ for all $f \in P_{1}^{X}$ and $g \in P_{2}^{Y}$.
(3) If $f_{1} \leq_{1} f_{2}$ for all $f_{1}, f_{2} \in P_{1}^{X}$, then $\gamma_{R}\left(f_{2}\right)(y) \leq_{2} \gamma_{R}\left(f_{1}\right)(y)$.
(4) If $g_{1} \leq_{2} g_{2}$ for all $g_{1}, g_{2} \in P_{2}^{X}$, then $\rho_{R}\left(g_{2}\right)(x) \leq_{1} \rho_{R}\left(g_{1}\right)(y)$.
(5) $\bigwedge_{i \in \Gamma} \gamma_{R}\left(f_{i}\right)=\gamma_{R}\left(\bigvee_{i \in \Gamma} f_{i}\right)$ for all $f_{i} \in P_{1}^{X}$.
(6) $\bigwedge_{i \in \Gamma} \rho_{R}\left(g_{i}\right)=\rho_{R}\left(\bigvee_{i \in \Gamma} g_{i}\right)$ for all $g_{i} \in P_{2}^{Y}$.
(7) $\gamma_{R}(f)=\gamma_{R}\left(\rho_{R}\left(\gamma_{R}(f)\right)\right)$ for all $A \in L^{X}$. If $f=f_{1}$ is a solution of $\gamma_{R}(f)=g$, then $f=\rho_{R}(g)$ is a solution of $\gamma_{R}(f)=g$ such that $f_{1} \leq_{1} \rho_{R}(g)$.
(8) $\rho_{R}(g)=\rho_{R}\left(\gamma_{R}\left(\rho_{R}(g)\right)\right)$ for all $g \in P_{2}^{Y}$. If $g=g_{1}$ is a solution of $\rho_{R}(g)=f$, then $g=\gamma_{R}(f)$ is a solution of $\rho_{R}(g)=f$ such that $g_{1} \leq \gamma_{R}(f)$.
(9) $\rho_{R} \circ \gamma_{R}: P_{1}^{X} \rightarrow P_{1}^{X}$ and $\gamma_{R} \circ \rho_{R}: P_{2}^{Y} \rightarrow P_{2}^{Y}$ are fuzzy closure operators.

Proof. (1) We show that $g \leq_{2} \gamma_{R}(f)$ iff $f \leq_{1} \rho_{R}(g)$ for all $f \in P_{1}^{X}, g \in$ P_{2}^{Y}.

For $f \in P_{1}^{X}, g \in P_{2}^{Y}, g(y) \leq_{2} \gamma_{R}(f)(y)=\bigwedge_{x \in X}(f(x) \Rightarrow R(x, y))$ iff $f(x) \leq_{1} \bigwedge_{y \in Y}(g(y) \rightarrow R(x, y))$ iff $f(x) \leq_{1} \rho_{R}(g)(x)$.
(2) It follows from $\rho_{R}(g) \leq_{1} \rho_{R}(g)$ iff $g \leq_{2} \gamma_{R}\left(\rho_{R}(g)\right)$ and $\gamma_{R}(f) \leq_{2}$ $\gamma_{R}(f)$ iff $f \leq_{1} \rho_{R}\left(\gamma_{R}(f)\right)$.
(3) Since $f_{1} \leq_{1} f_{2} \leq_{1} \rho_{R}\left(\gamma_{R}\left(f_{2}\right)\right), \gamma_{R}\left(f_{2}\right) \leq_{2} \gamma_{R}\left(f_{1}\right)$.
(4) Since $g_{1} \leq_{2} g_{2} \leq_{2} \gamma_{R}\left(\rho_{R}\left(g_{2}\right)\right), \rho_{R}\left(g_{2}\right) \leq_{1} \rho_{R}\left(g_{1}\right)$.
(5) By (3), since $f_{1} \leq_{1} f_{2}$, then $\gamma_{R}\left(f_{2}\right) \leq_{2} \gamma_{R}\left(f_{1}\right)$. Hence $\gamma_{R}\left(\bigvee_{i \in \Gamma} f_{i}\right) \leq_{2}$ $\bigwedge_{i \in \Gamma} \gamma_{R}\left(f_{i}\right)$.

Since $f_{i} \leq_{1} \rho_{R}\left(\gamma_{R}\left(f_{i}\right)\right)$ and $\bigvee_{i \in \Gamma} f_{i} \leq_{1} \bigvee_{i \in \Gamma} \rho_{R}\left(\gamma_{R}\left(f_{i}\right)\right) \leq_{1} \rho_{R}\left(\bigwedge_{i \in \Gamma} \gamma_{R}\left(f_{i}\right)\right)$, Thus $\gamma_{R}\left(\bigvee_{i \in \Gamma} f_{i}\right) \leq_{2} \bigwedge_{i \in \Gamma} \gamma_{R}\left(f_{i}\right)$,
(6) It is similarly proved as (5).
(7) By (2), $\gamma_{R}(f)=\gamma_{R}\left(\rho_{R}\left(\gamma_{R}(f)\right)\right)$ for all $f \in P_{1}^{X}$. If $\gamma_{R}\left(f_{1}\right)=$ g, then $\gamma_{R}\left(\rho_{R}\left(\gamma_{R}\left(f_{1}\right)\right)\right)=\gamma_{R}\left(\rho_{R}(g)\right)=\gamma_{R}\left(f_{1}\right)=g$. Moreover, $f_{1} \leq_{1}$ $\rho_{R}\left(\gamma_{R}\left(f_{1}\right)\right)=\rho_{R}(g)$.
(8) It is similarly proved as (7).
(9) For each $g, h \in P_{2}^{Y}, g \leq_{2} \gamma_{R} \circ \rho_{R}(g)$ and $\left(\gamma_{R} \circ \rho_{R}\right) \circ\left(\gamma_{R} \circ \rho_{R}(g)\right)=$ $\gamma_{R} \circ \rho_{R}(g)$. If $g \leq_{2} h$, then $\rho_{R}(h) \leq_{1} \rho_{R}(g)$. Moreover $\left(\gamma_{R} \circ \rho_{R}\right)(g) \leq_{2}$ $\left(\gamma_{R} \circ \rho_{R}\right)(h)$. Hence $\gamma_{R} \circ \rho_{R}: P_{2}^{Y} \rightarrow P_{2}^{Y}$ is a fuzzy closure operator. Similarly, $\rho_{R} \circ \gamma_{R}$ is a fuzzy closure operator.

Example 3.6. Let $X=\{x, y, z\}$ be a set of cars and $Y=\{a, b\}$ be a set of attributes. Let $([0,1], \odot, \rightarrow, 0,1)$ be a t-norm (ref. $[2,6-8])$ as

$$
x \odot y=\max \{0, x+y-1\}, x \rightarrow y=\min \{1-x+y, 1\} .
$$

Let $[0,1]_{m}$ be a regular partition of $[0,1]$ in m pieces with $[0,1]_{m}=$ $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, \frac{m-1}{m}, 1\right\}$.

Let \& ${ }^{0}:[0,1]_{3} \times[0,1]_{4} \rightarrow[0,1]_{2}, \quad \Rightarrow^{0}:[0,1]_{3} \times[0,1]_{2} \rightarrow[0,1]_{4}$, $\rightarrow^{0}:[0,1]_{4} \times[0,1]_{2} \rightarrow[0,1]_{3}$ defined as

$$
\begin{aligned}
& x \&^{0} y=\frac{[2(x \odot y)]}{2}, x \Rightarrow^{0} y=\frac{<4(x \rightarrow y)>}{4} x \rightarrow^{0} y=\frac{<3(x \rightarrow y)>}{3} \\
& \begin{array}{cccccccccccccc}
\&^{0} & 0 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & 1 & \Rightarrow^{0} & 0 & \frac{1}{2} & 1 & \rightarrow^{0} & 0 & \frac{1}{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 1 & 1 & & \frac{1}{4} & \frac{2}{3} & 1 \\
\hline \frac{2}{3} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 1 & & \frac{2}{3} & \frac{1}{4} & \frac{3}{4} & 1 & & \frac{1}{2} & \frac{1}{3} \\
\hline & 1 & 1 \\
1 & 0 & \frac{1}{2} & \frac{1}{2} & 1 & 1 & 1 & 0 & \frac{1}{2} & 1 & & \frac{3}{4} & 0 & \frac{2}{3} \\
1 & 1 \\
1 & & & & & & & \frac{1}{3} & 1
\end{array}
\end{aligned}
$$

where $[x]=\bigwedge\{n \in Z \mid x \leq n\},<x>=\bigvee\{n \in Z \mid n \leq x\}$.
(1) Define $R: X \times Y \rightarrow[0,1]_{3}$ as

$$
\begin{aligned}
& R(x, a)=\frac{1}{3}, R(y, a)=1, R(z, a)=\frac{2}{3} \\
& R(x, b)=0, R(y, b)=\frac{2}{3}, R(z, b)=1 .
\end{aligned}
$$

For $f_{1} \in[0,1]_{2}^{X}$ with $f_{1}=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$. Then $\epsilon_{R}\left(f_{1}\right)=\left(0, \frac{1}{4}\right)$. $f_{1}=$ $\left(\frac{1}{2}, 0, \frac{1}{2}\right) \in[0,1]_{2}^{X}$ is a solution of $\epsilon_{R}\left(f_{1}\right)=\left(0, \frac{1}{4}\right)$. Also, $\delta_{R}\left(0, \frac{1}{4}\right)=\left(0,0, \frac{1}{2}\right)$ is a solution of $\epsilon_{R}\left(f_{1}\right)=\left(0, \frac{1}{4}\right)$ such that $\delta_{R}\left(0, \frac{1}{4}\right)=\left(0,0, \frac{1}{2}\right) \leq_{2} f_{1}=$ $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

For $g_{0} \in[0,1]_{4}^{X}$ with $g_{0}=\left(\frac{3}{4}, \frac{1}{4}\right)$. Then $\delta_{R}\left(g_{0}\right)=\left(\frac{1}{2}, 1, \frac{1}{2}\right)$. $g_{0}=$ $\left(\frac{3}{4}, \frac{1}{4}\right) \in[0,1]_{4}^{X}$ is a solution of $\delta_{R}(g)=\left(\frac{1}{2}, 1, \frac{1}{2}\right)$. Also, $\delta_{R}\left(\frac{1}{2}, 1, \frac{1}{2}\right)=\left(\frac{3}{4}, \frac{1}{2}\right)$ is a solution of $\delta_{R}(g)=\left(\frac{1}{2}, 1, \frac{1}{2}\right)$ such that $g_{0}=\left(\frac{3}{4}, \frac{1}{4}\right) \leq_{2} \delta_{R}\left(\frac{1}{2}, 1, \frac{1}{2}\right)=$ $\left(\frac{3}{4}, \frac{1}{2}\right)$.

Then $\left([0,1]_{4}^{Y}, \delta_{R}, \epsilon_{R},[0,1]_{2}^{X}\right)$ is a residuated connection.
(2) Define $R: X \rightarrow[0,1]_{4}$ for $c \in\{a, b\}$ as

$$
\begin{aligned}
& R(x, a)=\frac{3}{4}, R(y, a)=\frac{1}{4}, R(z, a)=1 \\
& R(x, b)=\frac{1}{2}, R(y, b)=1, R(z, b)=\frac{1}{4} .
\end{aligned}
$$

For $f_{1} \in[0,1]_{3}^{X}$ with $f_{1}=\left(\frac{1}{3}, \frac{2}{3}, 1\right)$. Then $\delta_{R_{p}}\left(f_{1}\right)=\left(\frac{1}{2}, 1\right) . f_{1}=$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right) \in[0,1]_{3}^{X}$ is a solution of $\delta_{R_{p}}\left(f_{1}\right)=\left(\frac{1}{2}, 1\right)$. Also, $\epsilon_{R_{p}}\left(\frac{1}{2}, 1\right)=$ $\left(\frac{2}{3}, 1, \frac{1}{3}\right)$ is a solution of $\delta_{R_{p}}(f)=\left(\frac{1}{2}, 1\right)$ such that $f_{1}=\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right) \leq_{1}$ $\epsilon_{R_{p}}\left(\frac{1}{2}, 1\right)=\left(\frac{2}{3}, 1, \frac{1}{3}\right)$.

For $g_{0} \in[0,1]_{2}^{X}$ with $g_{0}=\left(\frac{1}{2}, \frac{1}{2}\right)$. Then $\epsilon_{R_{p}}\left(g_{0}\right)=\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$. $g_{0}=$ $\left(\frac{1}{2}, \frac{1}{2}\right) \in[0,1]_{2}^{X}$ is a solution of $\epsilon_{R_{p}}(g)=\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Also, $\delta_{R_{p}}\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)=$ $\left(\frac{1}{2}, \frac{1}{2}\right)$ is a solution of $\epsilon_{R_{p}}(g)=\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$ such that $g_{0}=\left(\frac{1}{2}, \frac{1}{2}\right)=\delta_{R_{p}}\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)=$ $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Then $\left([0,1]_{3}^{Y}, \delta_{R_{p}}, \epsilon_{R_{p}},[0,1]_{2}^{X}\right)$ is a residuated connection.
(3) Define $R: X \times Y \rightarrow[0,1]_{2}$ as

$$
\begin{aligned}
& R(x, a)=0, R(y, a)=\frac{1}{2}, R(z, a)=\frac{1}{2} \\
& R(x, b)=\frac{1}{2}, R(y, b)=1, R(z, b)=0 .
\end{aligned}
$$

Since $\gamma_{R}(f)(a)=\bigwedge_{x \in X}(f(x) \Rightarrow R(x, a)), f_{1}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \in[0,1]_{3}^{X}$ is a solution of $\gamma_{R}(f)=\left(\frac{1}{2}, \frac{1}{4}\right)$. Also, $\rho_{R}\left(\frac{1}{2}, \frac{1}{4}\right)=\left(\frac{1}{3}, 1, \frac{2}{3}\right)$ is a solution of $\gamma_{R}(f)=\left(\frac{1}{2}, \frac{1}{4}\right)$ such that $f_{1}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \leq_{1} \rho_{R}\left(\frac{1}{2}, \frac{1}{4}\right)=\left(\frac{1}{3}, 1, \frac{2}{3}\right)$.

Since $\rho_{R}(g)(x)=\bigwedge_{x \in X}(g(a) \rightarrow R(x, a)), g=g_{1}=\left(\frac{1}{4}, \frac{1}{2}\right) \in[0,1]_{4}^{Y}$ is a solution of $\rho_{R}(g)=\left(\frac{2}{3}, 1, \frac{1}{3}\right)$. Also, $g=\gamma_{R}\left(\frac{2}{3}, 1, \frac{1}{3}\right)=\left(\frac{1}{4}, \frac{1}{2}\right)$ is a solution of $\rho_{R}(g)=\left(\frac{2}{3}, 1, \frac{1}{3}\right)$ such that $g_{1}=\left(\frac{1}{4}, \frac{1}{2}\right)=\gamma_{R}\left(\frac{2}{3}, 1, \frac{1}{3}\right)$.

Then $\left([0,1]_{3}^{X}, \gamma_{R}, \rho_{R},[0,1]_{4}^{Y}\right)$ is a Galois connection.

References

[1] A.A. Abdel-Hamid, N.N. Morsi, Associatively tied implications, Fuzzy Sets and Systems, 136 (3) (2003), 291-311.
[2] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
[3] M.E. Cornejo, J. Medina, E. Ramírez, A comparative study of adjoint triples, Fuzzy Sets and Systems, 211 (2013), 1-14.
[4] M.E. Cornejo, J. Medina and E. Ramírez, Multi-adjoint algebras versus noncommutative residuated structures, International Journal of Approximate Reasoning 66 (2015), 119-138.
[5] N. Madrid, M. Ojeda-Aciego, J. Medina and I. Perfilieva, L-fuzzy relational mathematical morphology based on adjoint triples, Information Sciences 474 (2019), 75-89.
[6] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[7] U. Höhle, E.P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publishers, Boston, 1995.
[8] U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, 1999.
[9] Y.C. Kim, Join-meet preserving maps and Alexandrov fuzzy topologies, Journal of Intelligent and Fuzzy Systems 28 (2015), 457-467.
[10] M. Kryszkiewicz, Rough set approach to incomplete information systems, Information Sciences 112 (1998), 39-49.
[11] Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci., 11 (1982), 341-356.
[12] Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)
[13] I. Perfilieva, Finitary solvability conditions for systems of fuzzy relation equations, Information Sciences, 234 (2013), 29-43.
[14] I. Perfilieva and L. Noskova, System of fuzzy relation equations with inf- composition: Commplete set of solutions, Fuzzy Sets and Systems 159 (2008), 22562271.
[15] E. Sanchez, Resolution of composite fuzzy relation equations, Inform. and Control 30 (1976), 38-48.
[16] B.S. Shieh, Solutions of fuzzy relation equations based on continuous t-norms, Information Sciences, 177 (2007), 4208-4215.
[17] P. Sussner, Lattice fuzzy transforms from the perspective of mathematical morphology, Fuzzy Sets and Systems, 288 (2016), 115-128.
[18] S. P. Tiwari, I. Perfilieva and A.P. Singh, Generalized residuated lattices based F-transformation, Iranian Journal of Fuzzy Systems 15 (2) (2018), 165-182.
[19] M. Ward, R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939), 335-354,

Jung Mi Ko

Department of Mathematics
Gangneung-Wonju National
Gangneung 25457, Korea
E-mail: jmko@gwnu.ac.kr

Yong Chan Kim

Department of Mathematics
Gangneung-Wonju National
Gangneung 25457, Korea
E-mail: yck@gwnu.ac.kr

[^0]: Received Autust 28, 2019. Revised September 26, 2019. Accepted December 3, 2019.

 2010 Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05.
 Key words and phrases: Adjoint triples, residuated connections, Galois connections, fuzzy relational erosion(dilation), fuzzy closure (interior) operator.

 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

 * Corresponding author.
 (c) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

