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FUZZY CONNECTIONS ON ADJOINT TRIPLES

JunGg M1 Ko AND YoNG CHAN Kim*

ABSTRACT. In this paper, we introduce the notion of residuated and
Galois connections on adjoint triples and investigate their properties.
Using the properties of residuated and Galois connections, we solve
fuzzy relation equations and give their examples.

1. Introduction

Ward et al.[19] introduced a complete residuated lattice which is an
algebraic structure for many valued logic. It is an important mathe-
matical tool as algebraic structures for many valued logics [2,6-10,18].
Pawlak [11,12] introduced the rough set theory as a formal tool to deal
with imprecision and uncertainty in the data analysis. For an extension
of classical rough sets, many researchers [2,9,10] developed L-lower and
L-upper approximation operators in complete residuated lattices.

Abdel-Hamid [1] introduced the notion of adjoint triples. By using
this concepts, Medina et al.[3-5] developed information systems and deci-
sion rules. Sanchez [15] introduced the theory of fuzzy relation equations
with various types of composition: max-min, min-max, min-«. Fuzzy
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relation equations with new types of composition( continuous t-norm
[16], residuated lattice [13,14]) is developed.

In this paper, we show that there exists the residuated connection
between fuzzy relational erosion and fuzzy relational dilation on adjoint
triples. Moreover, we study residuated and Galois connections on adjoint
triples and investigate their properties. Using the properties of residu-
ated and Galois connections, we solve fuzzy relation equations and give
their examples.

2. Preliminaries

DEFINITION 2.1. [2,9,17] Let X and Y be sets. Let (P, <;) and
(Py,<5) be posets. Let §,v: PX — Py and ¢,p: Py — Pj.

(1) (P{~,0,¢,PY) is called a residuated connection if §(f) <o g iff
f<ie(g) forall feP¥ gePy.

(2) (P, v, p, PY) is called a Galois connection if g <, y(f) iff f <y
p(g) for all f € P ge PY.

DEFINITION 2.2.[2] Let X be aset and (P, <) be a poset. An operator
C : PX — PX is called a fuzzy closure operator on X if it satisfies the
following conditions:

(C1) f < C(f) and C(C(f)) < C(f), for all f € PX.

(C2) If f < g, then C(f) < C(g) for all f,g € PX.

An operator I : PX — PX is called a fuzzy interior operator on X if
it satisfies the conditions

(1) 1(f) < f and I(f) < I(I(f)) for all f € P¥,

(I2) If f < g, then I(f) < I(g) for all f,g € P¥.

DEFINITION 2.3. [3-5] Let (P, <4), (P2, <), (Ps3,<3) be posets. We
say that the mappings & : P, x P, — P35, —: P, x P; — P; and
=: P X P; — P is called an adjoint triple if it satisfies the following
conditions:

<y (y—2)iffak&y <3 ziffy <y (r = 2) forx € P,y € P,z € Ps.

EXAMPLE 2.4. Let [0, 1],, be a regular partition of [0, 1] in m pieces
with [0,1],, = {0,2,2, ..., 2L 1}, A discretization of a t-norm 7T :

‘m'm? ) m
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[0,1] x [0,1] — [0,1] is the operator TV : [0, 1],, x [0,1], — [0, 1] defined

as
(KT (2, y)]
k
where [x] = A{n € Z | z < n} is the ceiling function. For this operator,
the corresponding implication operators —°: [0,1], x [0,1]; — [0,1],,
and =2 [0, 1],, x [0,1]x — [0, 1],, defined as
Y0 — <m(y—>z)>7 0, <n(z—z) >
m n
where < x >=\/{n € Z | n <z} is the floor function.
Letx <y —%2= m(zjn—_}m Sincex—1 <<z ><z,z < <m(?jn——>@> <

w =y — 2. Hence T'(z,y) < z. Since z < [z] <z + 1,
(kT (x,y)] _ ET(x,y)+1 At 1.
k k -k
Hence T%(z,y) = M <z
Let T°(x,y) = M < z. Since kT (z,y) < [kT(x,y)], T(z,y) < z
ifty<axr—z. Hence

< — > < — >
U n(x — z) - n(x — 2) >y
n n

To(xv y) =

T°(x,y) =

Other cases are similarly proved.

3. Fuzzy connections on adjoint triples

LEMMA 3.1. Let P; be complete lattices fori € {1,2,3}. Let (&, —,=
) be an adjoint triple with respect to (Py,<1), (P2, <s), (P3,<3). Then
the following properties hold.

(1) If 1 <4 xq, then x1&y <3 22&y.

(2) If y1 <o yo, then &y <3 2&y,.

(3) —,= are order-preserving on the second argument and order-
reversing on the first argument.
(4) y <2 (z = (2&y)), = <1 (y — (2&y)).
(5) z&(z = 2) <3z, (y = 2)&y <5 z.
(6) y <o ((y = 2) = 2), 2 <y (= 2) = 2).
(7) (Vi i)y = Vi (wdeys) and 2&(V,; yi) = V;(zd&ey;).
®) z = (A\;z) = Nilz = 2) and (V;2:) = 2 = \;(zi = 2).
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9)y—= (N z)=Ny—=z)and (V,y) = 2= N\,(yi = 2).

Proof. (1) Since 1 <1 73 <1 (y = x2&y), z1&y <3 z2&y.

(2) Since y1 <o yo <o (y = 2&ys), v&yr <3 2&ys.

(3) Let 21 <y 9. Since 21&(x = 2) <3 22&(12 = 2) <3 2, (v =
Z) <5 (Il = Z).

Let 21 <3 z5. Since (x — z1)&x <3 21 <3 29, (x = 21) <1 (z = 22).

Other cases are similarly proved.

(4) Tt follows z&y <3 z&y.

(5) It follows (z = z) <5 (x = 2) iff 2&(x = z) <3 z. Moreover,
(y—=2) <1 (y—2)iff (y = 2)&y <3 2.

(6) By (5), (y — 2)&y <3 ziffy <5 ((y = z) = z). Moreover,z&(z =
2) <z ziff v <y ((x = 2) = 2).

(7) By (1), (V;zi)&y =5 \/;(z&y;). Since z; <5 (y = zi&ey) <o (y —
Viaiden)), Vi s (y — Vieadey)) it (V, 20y < V(o).

(8) By (3), # = (\;z) <2 N\;,(z = 2). Since z&(\,(x = %)) <3
r&(r = z) <3 z;, then z&(\, (v = 2)) <3 \,(z&(z = 2)) <3 A\, -
Thus A\,(z = 2z) <o z = (A, z)-

Moreover, by (3), (\/; z:) = z <o \,(z; = 2). Since (\/, z;)& A\, (z; =
2) <3 (V;z)&(x; = 2) = V,(v:&(x; = 2)) <3 z, then A\,(z; = 2) <o

DEFINITION 3.2. [5] Let X,Y be sets and P; be complete lattices.
Let (&,—,=-) be an adjoint triple with respect to (P, <1), (P, <s),
(P35, <3).

(1) The fuzzy relational erosion with respect to R € P;**Y  ep : P —
Py is defined as

er(Nw) = /\ (B(zy) = f(2)
rxeX
(2) The fuzzy relational dilation with respect to R, 0r : Py — P5X is

defined as
0r(9)(x) = \/ (R(z,y)&g(y)).

yey
(3) The fuzzy relational property-oriented erosion with respect to R,
er, : P — P;{* is defined as

er,(9)() = /\ (R(z,y) = 9(y))-

yey
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(4) The fuzzy relational property-oriented dilation with respect to R,
g, : Pi* — P is defined as

0r,(N)(y) = \/ (f(@)&R(z.y)).

zeX

THEOREM 3.3. Let X,Y be sets and P; be complete lattices. Let
(&, —, =) be an adjoint triple with respect to (Py,<y), (P2, <2), (P53, <3
). Then the following properties hold.

(1) (PY,0R,€r, PY) is a residuated connection.

(2) Or(er(f)) <3 f iff g <2 €r(dr(g)) for all f € P¥,g € Py

(3) If f1 <3 fo and g1 <5 go, for all f1, fo € P g1,92 € Py,

er(f1) <2 €r(f2), Or(g91) <3 r(g2)-
)

(4) Vier 0r(9:) = 0r(Vicr 9i) for all g; € Py .

(5) /\ieF r(fi) = ER(/\Z‘EF fi) for all f; € Péx-

(6) or(g) = Or(er(dr(9))) for all g € PY. If g = go is a solution
of 0r(g) = [, then g1 = er(f) is a solution of dr(g) = f such that
9o < €r(/f)-

(7) er(Or(er(f))) = €r(f) for all f € PX. If f = fi is a solution
of €r(f) = g, then fo = 0r(g) is a solution of er(f) = g such that
or(9) < fi-

(8) dpoer: PX — P5* is a fuzzy interior operator.
(9) egodg: Py — P is a fuzzy closure operator.

Proof. (1) We show that dg(g) <3 f iff g <y er(f) forall f € P;*, g €
Py For f e P g€ Py, dr(g)(x) <s f(x) iff \V oy (R(z,y)&g(y)) <
f(@) i g(y) <o Aoy (R(z,y) = f(2)) iff 9(y) <2 €r(f)(y).

(2) For f € P, g € Py, dr(g)(x) <3 or(9)(2) iff g(y) <o er(dr(9))(y)
and er(f)(y) <2 er(f)(x) iff dr(er(f))(z) <5 f(x).

(3) Since g1(y) <2 92(y) <2 €r(dr(g2))(y), then 6r(g1)(z) < dr(g2)(x).
Moreover, since dr(er(f1))(7) <3 fa(x), er(f1)(y), €r(f2)(y).

(4) From (3)’ \/ieF 5R<gi) <3 5R(Vi€1‘ gi)'

Since g; <2 €r(0r(g;)) and \/iEF 9i <2 ER(\/iGF 6r(9:)); 53(\/1-@ 9i) <3
\/ieF Or(9i)-

(5) From (3)7 ER(/\ieF fl) <5 /\ieF ER(fi)~

Since Or(er(fi)) <s fi and dr(Acr€r(fi)) <3 Nicr Or(er(fi)) <s
Nier fis Nier €r(fi) <2 €r(Nier fi)-
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(6) By (2), 0r(g) = 0r(er(dr(g))) for all g € Py 1If dr(g0) = f,
Then 0r(er(0r(90))) = Or(er(f)) = 0r(g0) = f. Moreover, go <o

€r(0r(90)) = €r(f)-
(7) It is similarly proved as (6).

(8) For each f, f1, fo € L*, droer(f) <s f and (0roer)(droer)(f) =
droer(f), if fi <5 fo,

(6roer)(f1) <3 (6r o e€r)(f2)
(9) It is similarly proved as (8). O

COROLLARY 3.4. Let X,Y be sets and P; be complete lattices. Let
(&, —, =) be an adjoint triple with respect to (Py,<y), (P2, <2), (P53, <3
). Then the following properties hold.

(1) (P{*,0r,. €r,, P} is a residuated connection.

(2) O, (e, (9) <5 9 iff f <1 en, (O, () for all f € PX,g € Py

(3) If fr <s fo and g1 <3 g, for all f1, fo € P, 91,92 € Py,

€r,(91) <1 €r,(92), Or,(f1) <3 IR, (f2).

(4) Vier 0r,(fi) = 6r,(Vier fi) for all fi € P*.

(5) Nier €r,(9:) = €r,(Nicr 9:) for all g; € Py

(6) g, (f) = 0r,(er,(0r,(f))) for all f € P If f = fo is a solution
of 6r,(f) = g, then fi = eg,(g9) is a solution of ép,(f) = g such that
Jo <1 ¢€r,(9).

(7) €r,(0r,(€r,(9))) = €r,(g) for all g € Py. If g = g1 is a solution
of €r,(g9) = f, then go = Or,(f) is a solution of eg,(g) = f such that
Or,(f) <3 g1.

(8) 0, o €r, : Py — Py is a fuzzy interior operator.

(9) €r, 0 0g, : P{* — P{X is a fuzzy closure operator.

THEOREM 3.5. Let XY be sets and P; be complete lattices. Let
(&, —, =) be an adjoint triple with respect to (Py,<1), (Pa, <s), (P53, <3
). An operation yg : PX — Py is defined as

ve(Hy) = N (f(x) = R(z,y)).
zeX
An operation pr = PY — P{ is defined as

pr(9)(x) = /\ (9(y) = R(z,y)).

yey
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Then following properties hold.

(1) (P, VR, pr, PY) is a Galois connection.
f <1 pr(R(f)) and g <3 yr(pr(9)) for all f € Pi* and g €
If fr <1 fo forall fi, f2 € P, then vr(f2)(y) <o vr(f1)(Y)-
If g1 <2 go for all g1, g2 € P5*, then pr(g2)(z) <1 pr(g1)(y)

2) Py
|

; Nier Yr(fi) = YRV er fi) for all f; € P~

)

of vr(f) = g, then f = pgr(g) is a solution of yr(f) = g such that
f1 <1 pr(9).

(8) pr(9) = pr(Vr(pr(9))) for all g € PY'. If g = g1 is a solution
of pr(g) = [, then g = vr(f) is a solution of pr(g) = f such that

9) provr : P — P¥ and yro pgp : PY — P are fuzzy closure
operators.

Proof. (1) We show that g <, yr(f) iff f <1 pr(g) forall f € PX g€
Py.

For f € P, g € Py, g(y) <2 Wr(f)(y) = Npex(f(x) = R(z,y)) iff
f(@) <1 N\yey (9(y) — R(z,y)) iff f(x) <1 pr(g)().

(2) It follows from pr(g) <1 pr(9) iff g <2 Yr(pr(g)) and Yr(f) <2
yr(f) HE f <1 pr(vr(f)).

(3) Since f1 <1 fo <1 pr(Vr(f2)), YR(f2) <2 YR(f1)-

(4) Since g1 <o g2 <2 Vr(pr(92)), Pr(92) <1 pR(91)-

/\ (5) Bif (?), since f1 Sl fg, then ’}/R(fg) SQ ’}/R(fl) Hence ’YR(\/iEF f,L) SQ

ier TR i)

Since f; <1 pr(r(fi)) and V,cr fi <1 Vier ,r(OVR(fi)) <t pr(Nicr 7r(£i))
Thus ’YR(VieI‘ fl) < /\ieF /VR(fi)v

(6) It is similarly proved as (5).

(7) By (2), v&(f) = vrlpr(yr(f))) for all f e PX. If yr(fi) =
g, then vr(pr(Vr(f1))) = Yr(Pr(9)) = Vr(f1) = g. Moreover, fi <
pr(vr(f1)) = pr(9)-

(8) It is similarly proved as (7).

(9) For each g,h € Py, g <3 yro pr(g) and (yro pr) o (Yyro pr(9)) =
vr o pr(g). If g <5 h, then pr(h) <; pr(g). Moreover (vg o pr)(g9) <2
(vr © pr)(h). Hence yg o pr : Py — P) is a fuzzy closure operator.
Similarly, pr o g is a fuzzy closure operator.

]
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EXAMPLE 3.6. Let X = {z,y, 2} be a set of cars and Y = {a, b} be
a set of attributes. Let ([0,1],®, —,0,1) be a t-norm (ref.[2,6-8]) as
rOy=max{0,z+y—1}, x >y =min{l —z +y, 1}.

Let [0,1],, be a regular partition of [0,1] in m pieces with [0,1],, =
{o,£, 2 . m=L 1}
Let &0 [O 1]3 X [O 1]4 — [O 1]2, =0 [0, 1]3 X [O, 1]2 — [O, 1]4,
0:10,1]4 x [0,1]3 — [0,1]3 defined as

2 <4(r —y) > <3z —y) >
x&oy:[(xfy)],xioy: (1’4 y) z =0y = (Ig y)
@ol1sg sog1g 05l
000000 0 000 0 8(1)(1)

L g9 o 1 1 L1 97 4 3

I o1 i: 1tz 1 ol1

PoVita fetly foi

L 033 2 1 0%1
where [z] = A{neZ |z <n},<x>=\{neZ|n <z}

(1) Define R: X xY — [0,1]3 as

R(z,a) = 3, R(y,a) = 1, R(z,a) = %
R(z,b) = 0, R(y,b) = 2, R(2,b) =

For fi € [0,1]5 with fi = (3,0,3). Then eg(fi) = (0
(3,0,1) € 10,1]5 is a solution ofeR(fl) (0,1). Also, 6r(0,1) = (0,0, 3
is1 a S(l)lutlon of eg(f1) = (0, %) such that d5(0,%) = (0,0,3) <2 fi
(5707 5)'

For gy € [0,1]3 with go = (3, 7). Then dr(g0) = (
(3,3) €[0,1]§ is a solution of dg(g) = (3,1,1). Also, 6r(3,1,3) =
i<s3 aliolution of dr(g9) = (3,1, 3) such that go = (i,%) < 53(%,1,
402/

Then ([0, 1]}, 0r, €r, [0, 1]5F) is a residuated connection.

(2) Define R : X — [0, 1]4 for ¢ € {a, b} as

Rz = 3 Rna) =1 RGo) =

For fi € [0,1]F with f; = (%, % 1). Then 5Rp(f1) = (s,
(3,2,3) € [0,1)5 is a solution of g, (f1) = (5,1). Also,
3) is a solution of 0g,(f) = (3,1) such that f; = (%,

1) =0G13)

=
SN~—
S
—
N

—_
DO [—
N~——
N
o

N[ —= ||

SN—

~— o

9

1
3
of
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For gy € [0,1] with gy = (% %) Then €g,(g0) = (%,%,%) go =
(3.3) € [0,1]5" is a solution of eg,(g9) = (3,3,3). Also, dg,(3,3,3) =
(% %) is a solution of eg (g) = (— % %) such that gy = (;, ;) = 5Rp(§, %, %)
(3.3):

Then ([0,1]3, dr,, €r,, [0,1]5) is a residuated connection.

(3) Define R: X xY — [0,1]7 as

R(z,a) = 0,R(y,a) = 5,R(z,a) = 5
R([L’,b) = %7R(y7b> = ]-7R(Z7b =0

Since Vr(f)(a) = Aex(f(z) = R(z,a)), fi = (5,3.5) € [0,1]f is
a solution of vr(f) = (3,1). Also, pr(3,1) = (3,1,%) is a solution of
f}/R(f) (27 Z) such that fl = (%7 %7 %) <1 pR(%? i) = (%7 17 %)

Since pr(9)(2) = Auex (9(a) = R(z,a)), g = g1 = (4, 1) € [0,1]] is a
solution of pr(g) = (3,1,3). Also, g = yr(3,1 %) = (3, 3) is a solution
Opr( ) (37173> such that g1 = (472) ( )

Then ([0, 1], V&, pr, [0,1])) is a Galois connectlon.
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