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ON GENERALIZED f-DERIVATIONS OF LATTICE
IMPLICATION ALGEBRAS

Kyung Ho Kim

ABSTRACT. In this paper, we introduce the notion of generalized f-
derivation of lattice implication algebra and investigate some related
properties. Also, we prove that if D is a generalized f-derivation
associated with an f-derivation d of L, then D(x — y) = f(z) —
D(y) for all z,y € L.

1. Introduction

The concept of lattice implication algebra was proposed by Y. Xu
[11], in order to establish an alternative logic knowledge representation.
Also, in [12], Y. Xu and K. Y. Qin discussed the properties lattice H
implication algebras, and gave some equivalent conditions about lattice
H implication algebras. Y. Xu and K. Y. Qin [13] introduced the no-
tion of filters in a lattice implication, and investigated their properties.
The present author [5, 14] introduced the notion of derivation and f-
derivation in lattice implications algebras and obtained some related re-
sults. In this paper, we introduce the notion of generalized f-derivation
of lattice implication algebra and investigate some related properties.
Also, we prove that if D is a generalized f-derivation associated with an
f-derivation d of L, then D(x — y) = f(z) — D(y) for all z,y € L.
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2. Preliminaries

DEFINITION 2.1. A lattice implicationalgebra is an algebra (L; A, V, /,
—, 0, 1) of type (2,2,1,2,0,0), where (L; A, V,0,1) is a bounded lattice,
“ 17 is an order-reversing involution and “ — ” is a binary operation,
satisfying the following axioms, for all x,y, 2 € L,

L) z—=(y—2)=y— (v — 2),
(L2) 2 -z =1,

(L3) z—y=y — 2,

(d) z—y=y—ar=1=x=y,
(L5) (v = y) »y=(y = z) > u,
(L6) (zVy) = z=(x—2)A(y— 2),
(L7) (xANy) > z=(x — 2) V(y = 2).

If L satisfies conditions (I1) — (I5), we say that L is a quasi lattice
implicationalgebra. A lattice implication algebra L is called a lattice
H implication algebra if it satisfies z V y V ((x Ay) — 2z) = 1 for all
x,y,2 € L.

In the sequel the binary operation “ — ” will be denoted by juxtaposi-
tion. We can define a partial ordering “ < ” on a lattice implicational-
gebra L by z <y if and only if z — y =1 for all =,y € L.

PROPOSITION 2.2. In a lattice implicationalgebra L, the following
hold, for all z,y,z € L, (see [11])
ul) 0 »z=1,1—wzx=zandx —1=1,
)z —=y<(y—2) —(x—=2),
3) x <yimpliesy > z2<zx—zand z = x < z =y,
4) ' =2 — 0.
ub) zVy=(r—y) =y,
6) (y = z) =y) =zny=(x—>y) =),
Nr<(r—y —y.
DEFINITION 2.3. In a lattice H implication algebra L, the following
hold, for all z,y,z € L,
() x — (z — y) =2 — v,
(W9) x — (y = 2) = (z = y) — (z — z)(see [11]).
DEFINITION 2.4. A subset F' of a lattice implication algebra L is
called a filter of L it satisfies,
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(F1) 1 € F,
(F2) x € Fand x — y € F imply y € F, for all z,y € L(see [11]).
DEFINITION 2.5. Let L; and Ly be lattice implication algebras.
(1) A mapping f : Ly — Lo is an implication homomorphism if f(z —
y) = f(z) = f(y) for all x,y € L.
(2) A mapping f : Ly — Ly is an lattice implication homomorphism if

flxvy) = f(@)V f(y). flxAy) = fx) A fy), f(2) = f(z)" for all
x,y € Ly(see [11]).

DEFINITION 2.6. Let L be a lattice implication algebra and let f :
L — L be an implication homomorphism on L. A mapping d : L — L is
called an f-deriwation of L if there exists an implication homomorphism
f such that

d(z = y) = (f(x) = d(y)) V (d(x) = f(y))
for all z,y € L(see [11]).

PROPOSITION 2.7. Let d be a f-derivation on L. Then the following
conditions hold.

) =d(z)V f(x) for every z € L.
x) < d(x) for every x € L.

)V f(y) <d(x)Vd(y) for every z,y € L.
r —y) = f(x) = d(y) for every x,y € L.

3. Generalized f-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra and let f
be an implication homomorphism on L unless otherwise specified.

DEFINITION 3.1. Let L be a lattice implication algebra and let f :
L — L be an implication homomorphism on L. A map D : L x L — L
is called a generalized f-derivation of L if there exists an f-derivation
d : L — L satistying the the following condition

D(z —y) = (f(x) = D(y)) v (d(z) = f(y))
for all x,y € L.

Let L be a lattice implication algebra and let f be an implication
homomorphism on L. If D = d, then D is an f-derivation on L.
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EXAMPLE 3.2. Let X = {z,y}. Then

L=P(X)={0.{z} {v} X}.
Let 0=0,a={z},b={y}, 1= X. Then L ={0,a,b,1} is a bounded
lattice with above Hasse diagram.

0

We can make an implication — on L such as
a—b={z}U{y} ={y}u{y} ={y} =

Hence we have the operation table of the implication :

x| —>‘0a b 1
01 01 1 1 1
alb alb 1 b1
b| a bla a 1 1
110 110 a b1

If we define a map f: L — L by
0 ifxz=0a
f@y_{1 if 2= b1

then this map f is an implication homomorphism. Define amapd: L —
Land D:L — L by

. o
d(z) = b 1 r=0,a D(z) = 0 1 r=20,a
1 ifz=0>1 1 ifz=01

Then it is easy to check that d is an f-derivation on L and D is a
generalized f-derivation associated with d.

ExAMPLE 3.3. In Example 3.2, if we define a map f : L — L by
0 ifx=0,b
ﬂ@_{1 ifr=al

then this map f is an implication homomorphism on L. Define a map
d:L—Land D:L — L by
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L i . 0 ifz=0
1 =
d(z) = e D()={1 ifz=1,a
a ifxr=0,b .
a ifz=>b

Then it is easy to check that d is an f-derivation on L and D is a
generalized f-derivation associated with d.

PROPOSITION 3.4. Let d be an f-derivation on L and let D be a

generalized f-derivation associated with d. Then the following conditions
hold.

(1) D(1) = 1.

(2) D(z) = D(z) V f(x) for every x € L.

(3) f(z) < D(x) for every x € L.

(4) f(x) =y < D(x) — y for every x,y € L.

Proof. (1) Let D be a generalized f-derivation associated with d. Then

D(1) =D(1 — 1) = (f(1) = D(1)) v (d(1) — f(1))
—(1-D1)V(1—=1)=D(1)—1=1.

(2) For every x € L, we have
D(z) = D(1 = x) = (f(1) = D(x)) v (d(1) = f(z))
=1 = D(z)) V(1= fz)=D)V f(z).

(3) For all z € L, by part (2), we obtain

f(x) = D(x) = f(z) = (D(z) V f(x)) = f(x) = (D(x) = f(x)) = f(2))
= (D(z) = f(x)) = (f(x) = f(x)) = (D(x) = f(x)) =1
=1

This implies D(z) < f(x) for every = € L.
(4) For every z,y € L, we have D(z) < f(x) for every x € L by part
(3). Hence we get f(x) -y < D(z) — y for every x,y € L by (u3).
[

PROPOSITION 3.5. Let d be an f-derivation on L and let D be a
generalized f-derivation associated with d and f(D(z)) = D(x) for every
x € L. Then D(D(x) — z) =1 for every x € L.
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Proof. Let D be a generalized f-derivation associated with d. Then
D(D(z) = x) = (f(D(z)) = D(x)) V (d(D(x)) = f(x))

= (D(z) = D(z)) v (d(D(x)) = f(z)) =1V (d(D(x)) = f(x))
=1

]

PROPOSITION 3.6. Let d be an f-derivation on L and let D be a
generalized f-derivation associated with d on L. Then the following con-

ditions hold:
(1) D(z) = D(y) < D(x — y) for all z,y € L.
(2) D(x) — f(y) < f(z) = D(y) for all x,y € L.
(3) f(z) = f(y) < D(x — y) for all z,y € L.

Proof. (1) For all z,y € L, we have f(z) — D(y) < (f(z) = D(y)) V
(d(z) — f(y)) = D(x — y) from (u7). Now from f(z) < D(z), we get
D(xz) — D(y) < f(z) — D(y) by using (u3). Hence D(x) — D(y) <
D(xz — y).

(2) For any z,y € L, from f(x) < D(x) and f(y) < D(y), we get
D(z) = f(y) < f(z) = f(y) and f(z) — F(y) < f(x) — D(y) by using
(u3). Hence we obtain D(z) — f(y) < f(z) = D(y) for all z,y € L.

(3) From Definition 3.1 and (u7), for all z,y € L, we have f(z) —
D(y) < (f(z) - D)) v (dx) — [(3)) = Dix — ) for all 2y € L.
Since f(y) < D(y), we get f(x) — f(y) < f(x) — D(y), which implies
f(x) = fly) < D(x —y).

[l

THEOREM 3.7. Let d be an f-derivation on L. If D is a generalized
f-derivation associated with d on L, we get D(x — y) = f(z) — D(y)
for all z,y € L.

Proof. Suppose that D is a generalized f-derivation associated with
a derivation d on L. Then for any x,y € L, we have d(z) — f(y) <
f(x) = f(y) since f(z) < d(z) and f(z) = f(y) < f(z) = D(y) since
f(y) < D(y). Hence we have d(z) — f(y) < f(z) — D(y) and

Dz = y) = (f(x) = D(y)) v (d(z) = f(y))
)

(
= ((f(x) = D(y)) = (d(x) = f(y))) = (d(z) = f(y))
= ((d(z) = f(y)) = (f(x) = D(y))) = (f(x) = D(y))
=1—=(f(z) = D(y)) = f(z) = D(y)
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from (L5) and (u3). This completes the proof.
[l

THEOREM 3.8. Let d be an f-derivation on L and let D be a gener-
alized f-derivation associated with d. If it satisfies D(x — y) = D(x) —
f(y) for every x,y € L, we have D(z) = f(x).

Proof. Let d be an f-derivation on L and let D be a generalized f-
derivation associated with d. If it satisfies D(z — y) = D(z) — f(y) for
all z,y € L, we have

D(z) = D(1 - z) = D(1) — f(x)
=1 f(z) = f(2).
This completes the proof.
]

THEOREM 3.9. Let D be a generalized f-derivation associated with

an f-derivation d on L and let D be lattice implication homomorphism
on L. Then we have D(xz V y) = D(f(x)) vV D(f(y)) for every z,y € L.

Proof. For every z,y € L, we obtain, by (L7)
D(xzVy)=DE"Vy")=D((2' Ny') —0)
= f(@' Ay') = D(0) = (f'(z) = D(0)) vV (f'(y) — D(0))
= D(f'(z) = 0) v D(f'(y) = 0) = D(f(z)) v D(f(y))-
]

THEOREM 3.10. Let D be a generalized f-derivation associated with
an f-derivation d on L. Then the following conditions are equivalent:

(1) D is an isotone generalized f-derivation associate with d.
(2) D(z)V D(y) < D(xVy) for all z,y € L.

Proof. (1) = (2): Suppose that D is an isotone generalized f-derivation
associated with an f-derivation d of L. We know that z < x V y and
y < xVyforall x,y € L. Since D is isotone, D(x) < D(x V y) and
D(y) < D(xz V y). Hence we obtain D(z) V D(y) < D(z V y).

(2)= (1): Suppose that D(z)V D(y) < D(zVy) and < y. Then we
have D(z) < D(z)V D(y) < D(z Vy) = D(y).

[

DEFINITION 3.11. Let d be an f-derivation on L and let D be a
generalized f-derivation associated with d.
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(1) D is called a monomorphic generalized f-derivation associate with
d if D is one-to- one.

(2) D is called an epic generalized generalized f-derivation associate
with d if D is onto.

THEOREM 3.12. Let D be a generalized f-derivation associated with
an f-derivation d on L and let D is idempotent, that is, D*> = D. Then
the following conditions are equivalent:

(1) D(z) = x for all z € L.
(2) D is a monomorphic generalized f-derivation associate with an
f-derivation d of L.

(3) D is an epic generalized f-derivation associate with an f-derivation
d of L.

Proof. (1) =(2) is clear.

(2) =(1) Let D be a monomorphic generalized f-derivation associate
with d and x € L. By hypothesis, we have D(D(z)) = D(z) for every
x € L. Since D is monomorphic, we get D(z) = z for all x € L.
(1) =(3) is trivial.
(3) =(1) Let D be an epic generalized f-derivation associate with d and
x € L. Then there exists y € L such that D(y) = z. Hence we have
D(z) = D(D(y)) = D*(y) = D(y) = .

[l

Let d be an f-derivation of L and let D be a generalized f-derivation
associated with d. Define a set Fixp(L) by

Fizp(L) :=={x € L| D(x) = f(x)}
for all x € L. Clearly, 1 € Fizp(L).

PrROPOSITION 3.13. Let d be an f-derivation on L and let D be a

generalized f-derivation associated with d. Then the following properties
hold.

(1) Ifx € L and y € Fixp(L), we have x — y € Fizp(L).
(2) Ifx € L and y € Fixp(L), we have x Vy € Fixp(L).

Proof. (1) Let x € L and y € Fixp(L). Then we have D(y) = f(y).
Hence we get

D(z —y) = f(z) = D(y) = f(z) — f(y)
= f(z —y)
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from Theorem 3.7. This completes the proof.
(2) Let x,y € Fizp(L). Then we get
D(zVy)=D((x —y)=y) = flz —=y)— D(y)
=flz—=y) = fly) = fl(z=y) =)
= flzVy)

from Theorem 3.7. This completes the proof.
m

PROPOSITION 3.14. Let d be an f-derivation of L and let D be a
generalized f-derivation associated with d. If x < y and x € Fixp(L),
we have y € Fixp(L).

Proof. Let x < y and = € Fizxp(L). Then we have z — y = 1, and
so f(z) = f(y) = fx = y) = f(1) = 1. This means f(z) < f(y). By
hypothesis, D(x) = f(x) for every x € L. Thus we get
D(y) = D((1 = y) = D((z = y) = y)
=D((y = z) = z) = f(y > x) > D(z)
= fly—=2) = f2)=(fly) = f(2)) = f(z)
= (f(=) = f) = fly) = f@)V fly) = fy),

from Theorem 3.7. Hence y € Fizxp(L).
[l

DEFINITION 3.15. Let L be a lattice implication algebra. A non-
empty set F' of L is called a normal filter if it satisfies the following
conditions:

(1) 1e F.
(2) zre Landy € F imply x — y € F.

EXAMPLE 3.16. In Example 3.3, let F' = {1,a}. Then F' is a normal
filter of a lattice implication algebra L.

PROPOSITION 3.17. Let d be an f-derivation on L and let D be a

generalized f-derivation associated with d. Then Fixp(L) is a normal
filter of L.

Proof. Clearly, 1 € Fizp(L). By Proposition 3.13 (1), we know tat
x € L and y € F imply v — y € F. This completes the proof. m
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Let d be an f-derivation on L and let D be a generalized f-derivation
associated with d of L. Define a set KerD by

KerD={x € L| D(z) = 1}.
PROPOSITION 3.18. Let d be an f-derivation on L and let D be a

generalized f-derivation associated with d. Then

(1) Ify € KerD, then we have x Vy € KerD for all v € L.
(2) If x <y and x € KerD, theny € KerD.
(3) Ify € KerD, we have x — y € KerD for all x € L.

Proof. (1) Let D be a generalized f-derivation on L and y € KerD.
Then we get D(y) = 1, and so

D(xVy)=D((x—y) =y =flr—y) =Dy =flr—=y —-1=1

from Theorem 3.7. Hence we have x Vy € KerD.
(2) Let x <y and z € KerD. Then we get + — y =1 and D(z) = 1,

and so
D(y) =D(1 = y)=D((x = y) = y)

=D((y = z) = z)=fly = z) = D(z)
=fly—z)—>1=1

from Theorem 3.7. Hence we have y € KerD.
(3) Let y € KerD. Then D(y) = 1. Thus we have

Dix —y) = f(x) » D(y) = f(a) »1=1

from Theorem 3.7. Hence we get v — y € KerD.
O

THEOREM 3.19. Let d be an f-derivation on L and let D be a gen-
eralized f-derivation associated with a derivation d. Then KerD is a
normal filter of L.

Proof. Clearly, 1 € KerD. Let x € L and y € KerD. Then we have
d(y) =1, and so
D(z = y) = f(x) = D(y)
=f(z) > 1=1,
which implies * — y € KerD from Theorem 3.7. Hence KerD is a

normal filter of L.
O]
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DEFINITION 3.20. Let d be an f-derivation on L and let D be a
generalized f-derivation associated with d. A normal filter F' of L is
called a D-normal filter if D(F') = F.

Since D(1) = 1, it can be easily observed that the normal filter {1} is a
D-normal filter of L. If L is onto, then D(L) = L, which implies L is an
D-normal filter of L.

EXAMPLE 3.21. In Example 3.3, let F' = {1,a,b}. Then F'is a normal
filter of D. It can be verified that D(F') = F. Therefore, F' is an D-normal
filter of L.

LEMMA 3.22. Let d be an f-derivation on L and let D be a generalized

f-derivation associated with d and let I,J be any two D-normal filters
of L. Then we have I C J implies D(I) C D(J).

Proof. Let I C J and © € D(I). Then we have x = D(y) for some
y € I C J. Hence we get x = D(y) € D(J). Therefore, D(I) C D(J).
[l

PROPOSITION 3.23. Let d be an f-derivation on L and let D be a
generalized f-derivation associated with an f-derivation d of L. Then
an intersection of any two D-normal filters is also an D-normal filter of

L.

Proof. Let € D(INJ). Then x = D(a) for some a € I and a € J.
Hence © = D(a) € D(I) = I and = = D(a) € D(J) = J, which implies
zelnJ Nowletz e INnJ Thenx € [ = D(I) and x € J = D(J).
Hence we have « € D(I) N D(J). Hence I N J is a D-normal filter of L.

[l

DEFINITION 3.24. Let D be a generalized f-derivation associated with
a f-derivation d of L. A normal filter F of L is called an injective normal
filter with respect to D if for x,y € L, D(x) = D(y) and x € F implies
y e F.

Evidently, KerD is an injective normal filter of L. Though the normal
filter {1} is a D-normal filter, there is no guarantee that it is injective
normal filter.

THEOREM 3.25. Let D be a generalized f-derivation associated with
an f-derivation d of L. Then the following conditions are equivalent.
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(1) {1} is injective with respect to D.
(2) KerD = {1}.
(3) D(x) =1 implies that x = 1 for all x € L.

Proof. (1) = (2). Suppose that {1} is injective with respect to D.
Let € KerD. Then D(z) = D(1). Since {1} is injective, we can get
x € {1}. Therefore, KerD = {1}.

(2) = (3). The proof is trivial.
(3) = (1). Let D(z) = D(y) and x € {1}. Hence D(y) = D(x) =
D(1) =1, which implies y = 1 € {1}.

[

THEOREM 3.26. Let D be a generalized f-derivation associated with
an f-derivation d of L and let D be idempotent. Then an D-normal
filter F' of L is injective with respect to D if and only if for any x €
L,D(z) € F implies x € F.

Proof. Let I be a D-normal filter of L and let F' be injective with
respect to D. Suppose that D(x) € F = D(F) and « € L. Then D(z) =
D(a) for some a € F. Since F' is injective and a € F, we get that x € F.
Conversely, let z,y € L, D(x) = D(y) and = € F. Since x € D(F), we
get x = D(a) for some a € F. Hence D(y) = D(z) = D(D(a)) = D(a) €
D(F'), which implies that y € F. Therefore, F' is an injective normal
filter of L with respect to D.

[
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