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ALMOST ζ- CONTRACTION ON M- METRIC SPACE

M. Pitchaimani and K. Saravanan∗

Abstract. In this paper, we initiate the concept of almost ζ- con-
tractions via Simulation functions to find fixed points on M - metric
spaces, and prove some related fixed points results for such map-
pings. Moreover an illustration is provided to show the applicability
of our obtained results.

1. Introduction and Preliminaries

In 1994, Matthews [2] introduced partial metric spaces as a gener-
alization of a standard metric space which has nonzero self distance.
That is the distance between two identical point need not be zero. Then
many authors formulated and proved fixed point results in partial metric
spaces.
In 2014, Mehdi Asadi et al [1] formulated the concept of M-metric space
as a generalization of partial metric space, as well as, a generalization of
metric spaces. Vasile Berinde used weak contractions to find fixed points
in various spaces. Isik [3] introduced ζ- contraction to prove existence
of fixed points. In this paper, we proved the existence of fixed points in
M -metric space using almost ζ -contraction. For more studies of fixed
point results for different contraction refer [4-11] and reference therein.
In this section we will recall the basic notions of M-metric space and
ζ-contraction. The following notion will be used in the presentation,
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Definition 1.1. [1] Let X be a nonempty set. If the function m :
X ×X → R+ satisfies the following conditions for all x, y, z ∈ X,

1. m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,
2. mxy ≤ m(x, y),
3. m(x, y) = m(y, x),
4. (m(x, y)−mxy) ≤ (m(x, z)−mxz) + (m(z, y)−mzy),

Then the pair (X,m) is called M− metric space, where

1. mxy := min{m(x, x),m(y, y)},
2. Mxy := max{m(x, x),m(y, y)}.
Remarks 1.2. [1] For every x, y ∈ X,
1. 0 ≤Mxy +mxy = m(x, x) +m(y, y),
2. 0 ≤Mxy −mxy = |m(x, x)−m(y, y)|,
3. Mxy −mxy ≤ (Mxz −mxz) + (Mzy −mzy).

Example 1.3. Let X = [0,∞). Then m(x, y) =
x+ y

2
on X is M−

metric space.

Example 1.4. Let (X,m) be an M− metric space. Put

1. mw(x, y) = m(x, y)− 2mxy +Mxy,
2. ms(x, y) = m(x, y)−mxy when x 6= y and ms(x, y) = 0 if x = y.

Example 1.5. Let X = {1, 2, 3} Define m(1, 1) = 1,m(2, 2) =
9,m(3, 3) = 5,
m(1, 2) = m(2, 1) = 10,m(1, 3) = m(3, 1) = 7,m(3, 2) = m(2, 3) = 7.
Then (X,m) is M -metric space.

In [1], author describes each m metric on X generates a T0 topology
τm on X.
The set {Bm(x, ε) : x ∈ X, ε > 0}, where Bm(x, ε) = {y ∈ X : m(x, y) <
mxy + ε}, for all x ∈ X and ε > 0, forms a base of τm.

Definition 1.6. Let (X,m) be a M -metric space. Then,

1. A sequence {xn} in a M -metric space (X,m) converges to a point
x ∈ X if and only if

lim
n→∞

(m(xn, x)−mxnx) = 0. (1)

2. A sequence {xn} in a M -metric space (X,m) is called an m-cauchy
sequence if

lim
n→∞

(m(xn, xm)−mxnxm), lim
n→∞

(Mxnxm −mxnxm)
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exist.(and are finite)
3. M - metric space (X,m) is said to be complete if every m-Cauchy

sequence {xn} in X converges, with respect to τm, to a point x ∈ X
such that

( lim
n→∞

(m(xn, x)−mxnx) = 0 & lim
n→∞

(Mxnx −mxnx) = 0)

Lemma 1.7. [1] Assume that xn → x and yn → y as n → ∞ in an
M - metric space (X,m). Then

lim
n→∞

(m(xn, yn)−mxnyn) = m(x, y)−mxy.

Proof. We have
|(m(xn, yn)−mxnyn)−(m(x, y)−mxy)| ≤ (m(xn, x)−mxnx)+(m(y, yn)−
myyn)

Lemma 1.8. [1] Assume that xn → x as n → ∞ in M - metric space
(X,m). Then lim

n→∞
(m(xn, y)−mxny) = m(x, y)−mxy.

Lemma 1.9. [1] Assume that xn → x and xn → y as n → ∞ in
M -metric space (X,m). Then x = y.

Lemma 1.10. [1] Let {xn} be a sequence in M−metric space (X,m),
such that
∃ r ∈ [0, 1),

m(xn+1, xn) ≤ rm(xn, xn−1), ∀n ∈ N(1)

Then

1. lim
n→∞

m(xn, xn−1) = 0,

2. lim
n→∞

m(xn, xn) = 0,

3. lim
n→∞

mxmxn = 0,

4. {xn} is an m-Cauchy sequence.

Definition 1.11. [3] Let ζ : [0,∞)× [0,∞)→ R be a mapping, then
ζ is called a simulation function if it satisfies the following conditions:

1. ζ(0, 0) = 0,
2. ζ(t, s) < s− t for all t, s > 0,
3. If {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn >

0. then

lim
n→∞

sup ζ(tn, sn) < 0.(2)
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4. If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0

and
tn < sn for all n ∈ N, then Equation (2) is satisfied.

We denote the set of all simulation functions by Z

Example 1.12. [3] Let ζi : [0,∞)× [0,∞)→ R, i = 1, 2, 3 be defined
by

1. ζ1(t, s) = ψ(s) − φ(t) for all t, s ∈ [0,∞), where φ, ψ : [0,∞) →
[0,∞) are two continuous functions such that ψ(t) = φ(t) = 0 if
and only if t = 0 and
ψ(t) < t ≤ φ(t) for all t > 0.

2. ζ2 = s− f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞)

are two continuous functions with respect to each variable such
that f(t, s) > g(t, s) for all t, s > 0.

3. ζ3(t, s) = s−φ(s)−t for all t, s ∈ [0,∞), where φ : [0,∞)→ [0,∞)
is a continuous function such that φ(t) = 0 if and only if t = 0.

Definition 1.13. Let (X, d) be a metric space and ζ ∈ Z. We say
that T : X → X is an almost ζ-contraction with respect to ζ ∈ Z, if
there is a constant θ ≥ 0 such that

ζ(d(Tx, Ty), d(x, y) + θN(x, y)) ≥ 0.

for all x, y ∈ X, where

N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
If T is an almost ζ-contraction with respect to ζ ∈ Z, then

d(Tx, Ty) < d(x, y) + θN(x, y)

for all x, y ∈ X.

Definition 1.14. Let (X, d) be a metric space and ζ ∈ Z. We say
that T : X → X is an λ−L almost ζ− Contraction if there is a constant
L ≥ 0 and λ ∈ (0, 1) such that

ζ(d(Tx, Ty), λ(x, y) + LN(x, y)) ≥ 0.

for all x, y ∈ X, where

N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
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Definition 1.15. Let (X, d) be a metric space and T : X → X be a
self mapping, then
FixT (X) = {x ∈ X : Tx = x}, FixT (X) denotes the collection of all
fixed points of T in X.

Lemma 1.16. If an almost ζ-contraction has a fixed point in a metric
space, then it is unique.

Proof. Let (X,m) be a M -metric space and T : X → X be an almost
ζ-contraction. Suppose that there are two distinct fixed points u, v ∈ X
of the mapping T . Then, d(u, v) > 0. Therefore, we have

0 ≤ ζ(m(Tu, Tv),m(u, v) + θN(u, v))
= ζ(m(Tu, Tv),m(u, v) + θmin {m(u, Tu),m(v, Tv),m(u, Tv),m(v, Tu)})
= ζ(m(u, v),m(u, v))
< m(u, v)−m(u, v)
= 0.

which is a contradiction. Thus, the fixed point of T in X is unique.
Our main result is as follows.

2. Main Results

Theorem 2.1. Let (X,m) be a complete M - metric space, T : X →
X be an almost ζ-contraction with respect to ζ ∈ Z, then T has a unique
fixed point, and for every initial point x0 ∈ X, the Picard sequence
{T nx0} converges to x in X, such that x ∈ FixT (X).

Proof. Take x0 ∈ X and consider the Picard sequence {xn = T nx0 =
Txn−1}n≥0. If xn0 = xn0+1 for some n0, then xn0 is a fixed point of T.
Hence, for the rest of the proof, we assume that m(xn, xn+1) > 0 for all
n ≥ 0.
This proof is divided into three parts. In the first step, we prove that,

lim
n→∞

m(xn, xn+1) = 0

Consider,

m(xnk
, xnk+1

) = 0 for some nk ∈ N.(3)

Then we have m(xnk+1
, xnk+2

) = 0.
If not m(xnk+1

, xnk+2
) > 0

0 < ζ(m(xnk+1
, xnk+2

),m(xnk
, xnk+1

) + θN(xnk
, xnk+1

))(4)
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where N(xnk
, xnk+1

)
= min{m(xnk

, xnk+1
),m(xnk+1

, xnk+2
),m(xnk

, xnk+2
),m(xnk+1

, xnk+1
)} From

(3) we have N(xnk
, xnk+1

) = 0.
By the definition of ζ function we’ve

0 < ζ(m(xnk+1
, xnk+2

),m(xnk
, xnk+1

) + θN(xnk
, xnk+1

))
= m(xnk

, xnk+1
)−m(xnk+1

, xnk+2
)

= −m(xnk+1
, xnk+2

)
≤ 0.

which implies that
lim
n→∞

m(xnk+1
, xnk+2

) = 0

Now, we will provem(xn, xn+1) is a non decreasing sequence and bounded
below by zero.
we know that

m(xn, xn+1) > 0

m(xn, xn+1) = m(Txn−1, Txn)
≤ m(xn−1, xn) + θN(xn−1, xn)

m(xn, xn+1)−m(xn−1, xn) ≤ θN(xn−1, xn)

m(xn, xn+1) ≤ m(xn−1, xn)(5)

Because

N(xn−1, xn) = min{m(xn−1, xn),m(xn, xn),m(xn, xn+1),m(xn+1, xn+1)}
when n→∞ then N(xn−1, xn) = 0.
From (5), m(xn, xn−1) is non-decreasing sequence bounded below by
zero.
Now, we will show that {xn} is bounded.
Suppose {xn} is unbounded.
Then there exists nk > n such that

m(xnk
, xnk+1

) > h(say)

which means that m(xnk−1
, xnk

) < h.
Consider two sequences {sn} and {tn} where sn = m(xn, xn+1). tn =
m(xn−1, xn)

0 ≤ lim
n→∞

sup ζ(m(xn−1, xn),m(xn, xn+1)

0 ≤ lim
n→∞

(m(xn, xn+1)−m(xn−1, xn))

0 ≤ − lim
n→∞

m(xn−1, xn)
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This shows that m(xn−1, xn) < 0, which is not possible.
So we must have h = 0.

lim
n→∞

m(xn−1, xn) = 0.

Now we will prove that {xn} is m-Cauchy sequence in (X,m).
We have

lim
n→∞

m(xn, xn+1) = 0,

i.e., m(xn, xn+1) ≤Mxnxn+1 ≤ 0 =⇒ lim
n→∞

Mxnxn+1 = 0.(6)

From the definition of M -metric and (6)

mxnxn+1 = min(m(xn, xn),m(xn+1, xn+1)) = 0

Let us take

an,m = m(xn, xm)−mxnxm

lim
n,m→∞

an,m 6= 0, there exists l > 0 and {lk} ⊂ N, such that an,m(xlk , xnk
) ≥

l which means that an,m(xnk
, xlk−1

) < l

l ≤ an,m(xlk , xnk
)

≤ an,m(xlk , xlk−1
) + an,m(xlk−1

, xnk
)

< an,m(xlk , xlk−1
) + l

This implies that

lim
k→∞

an,m(xlk , xnk
) = l

which means that

lim
k→∞

m(xlk , xlk−1
) = l +mlklk−1

.

On the other hand,

lim
k→∞

m(xlk , xlk−1
) = l

l ≤ an,m(xlk , xnk
)

≤ an,m(xlk , xlk+1
) + an,m(xlk+1

, xnk+1
) + an,m(xnk+1

, xnk
)

l ≤ an,m(xlk+1
, xnk+1

)
≤ an,m(xlk+1

, xlk) + an,m(xlk , xnk
) + an,m(xnk

, xnk+1
)

From the above, we get

lim
n→∞

m(xlk+1
, xnk+1

) = l
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Let un = m(xlk , xlk−1
) and vn = m(xlk+1

, xnk+1
)

0 ≤ lim
n→∞

sup ζ(un, vn)

=⇒ vn − un < 0

This contradicts that

lim
n→∞

m(xnk
, xlk) = 0.

=⇒ lim
n,m→∞

m(xn, xm)−mxnxm = 0.

=⇒ lim
n,m→∞

m(xn, xm) = mxnxm

∴ {xn} is m − Cauchy in X. Since X is a complete M−metric space,
the Picard sequence xn → x ∈ X in τm topology that means

lim
n→∞

m(xn, x)−mxnx = 0

and also

lim
n→∞

m(xn, xn)−mxnxn = 0

Since T is continuous

lim
n→∞

m(Txn, Tx)−mTxnTx = 0

lim
n→∞

(m(xn, x) + θN(xn, x)−mTxnTx) = 0

lim
n→∞

m(xn, x)−mxn+1Tx = 0

lim
n→∞

mxn+1Tx = 0

So we have

lim
n→∞

(m(xn, x)) = 0

By lemma 1.10

lim
n→∞

m(xn, Tx)−mxnTx = lim
n→∞

m(x, Tx)−mxTx

m(x, Tx) = 0 as n→∞.
Hence

m(Tx, x) = m(x, x) = 0 =⇒ Tx = x

x ∈ FixT (X).
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Theorem 2.2. Let (X,m) be a complete M−metric space, T : X →
X be an λ− L almost ζ-contraction with respect to ζ ∈ Z, then T has
a fixed point, and for every initial point x0 ∈ X, the picard sequence
{T nx0} converges to x in X, such that x ∈ FixT (X).

Proof. Take x0 ∈ X and consider the Picard sequence {xn = T nx0 =
Txn−1}n≥0.
If xn0 = xn0+1 for some n0, then xn0 is a fixed point of T. Hence, for the
rest of the proof, we assume that m(xn, xn+1) > 0 for all n ≥ 0.
We will prove

lim
n→∞

m(xn, xn+1) = 0.

Consider,

m(xnk
, xnk+1

) = 0 for some nk ∈ N(7)

Then we have m(xnk+1
, xnk+2

) = 0.
Suppose that m(xnk+1

, xnk+2
) > 0

0 < ζ(m(xnk+1
, xnk+2

), λm(xnk
, xnk+1

) + LN(xnk
, xnk+1

))(8)

where N(xnk
, xnk+1

)
= min{m(xnk

, xnk+1
),m(xnk+1

, xnk+2
),m(xnk

, xnk+2
),m(xnk+1

, xnk+1
)} From

(7) we have N(xnk
, xnk+1

) = 0 By the definition of ζ function we’ve

0 < ζ(m(xnk+1
, xnk+2

), λm(xnk
, xnk+1

) + LN(xnk
, xnk+1

))
= m(xnk

, xnk+1
)− λm(xnk+1

, xnk+2
)

= −λm(xnk+1
, xnk+2

)

which gives the contradiction m(xnk+1
, xnk+2

) < 0. This implies that

lim
n→∞

m(xnk+1
, xnk+2

) = 0.

Now, we will prove m(xn, xn+1) is a non decreasing sequence which is
bounded below by zero.
we know that

m(xn, xn+1) > 0

m(xn, xn+1) = m(Txn−1, Txn)
≤ λm(xn−1, xn) + LN(xn−1, xn)

m(xn, xn+1)− λm(xn−1, xn) ≤ LN(xn−1, xn)
m(xn, xn+1) ≤ λm(xn−1, xn)

Because

N(xn−1, xn) = min{m(xn−1, xn),m(xn, xn),m(xn, xn+1),m(xn+1, xn+1)}
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when n→∞ then N(xn−1, xn) = 0.
From (3), m(xn, xn−1) is non-decreasing sequence bounded below by
zero.
Now, we will show that {xn} is bounded.
Suppose {xn} is unbounded.
Then there exists nk > n such that

m(xnk
, xnk+1

) > h(say)

which means that m(xnk−1
, xnk

) < h.
Consider two sequences {sn} and {tn} where sn = m(xn, xn+1). tn =
m(xn−1, xn)

0 ≤ lim
n→∞

sup ζ(m(xn−1, xn),m(xn, xn+1)

0 ≤ lim
n→∞

(m(xn, xn+1)−m(xn−1, xn))

0 ≤ − lim
n→∞

m(xn−1, xn)

This shows that m(xn−1, xn) < 0, which is not possible.
So we must have h = 0.

lim
n→∞

m(xn−1, xn) = 0

. Using the same argument in the theorem 2.1, we can easily show that
{xn} is m-Cauchy. Since X is a complete M− metric space, the Picard
sequence xn → x ∈ X in τm topology that means,

lim
n→∞

m(xn, x)−mxnx = 0

and also

lim
n→∞

m(xn, xn)−mxnxn = 0

Since T is continuous

lim
n→∞

m(Txn, Tx)−mTxnTx = 0

lim
n→∞

(λnm(xn, x) + LN(xn, x)−mTxnTx) = 0

As n→∞, λn →∞.

lim
n→∞

mxn+1Tx = 0.

So we have

lim
n→∞

(m(xn, x)) = 0.
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By lemma 1.10,

lim
n→∞

m(xn, Tx)−mxnTx = lim
n→∞

m(x, Tx)−mxTx

m(x, Tx) = 0 as n→∞.
Hence

m(Tx, x) = m(x, x) = 0 =⇒ Tx = x

x ∈ FixT (X).

This completes the proof.

Corollary 2.3. Suppose that (X,m) is a complete M−metric space
and T : X → X is a mapping satisfying

m(Tx, Ty) ≤ δm(x, y) + LN(y, Ty), for all x, y ∈ X,

for δ ∈ (0, 1) and some L ≥ 0. Then

1. FixT (X) = {x ∈ X : Tx = x} 6= ∅
2. For arbitrary x0 ∈ X, the Picard iteration xn+1 = Txn for n ≥ 0

converges to some x ∈ FixT (X).

Corollary 2.4. Suppose that (X,m) is a complete M−metric space
and T : X → X is a mapping satisfying

m(Tx, Ty) ≤ δm(x, y) + LN(x, Tx), for all x, y ∈ X,

for δ ∈ (0, 1) and some L ≥ 0. Then

1. FixT (X) = {x ∈ X : Tx = x} 6= ∅
2. For arbitrary x0 ∈ X, the Picard iteration xn+1 = Txn for n ≥ 0

converges to some x ∈ FixT (X).

Corollary 2.5. Suppose that (X,m) is a complete M−metric space
and T : X → X is a mapping satisfying

m(Tx, Ty) ≤ δm(x, y) + LN(x, Ty), for all x, y ∈ X,

for δ ∈ (0, 1) and some L ≥ 0. Then

1. FixT (X) = {x ∈ X : Tx = x} 6= ∅
2. For arbitrary x0 ∈ X, the Picard iteration xn+1 = Txn for n ≥ 0

converges to some x ∈ FixT (X).
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3. Consequences

In this section, we endeavor to learn existence and uniqueness of fixed
points in M−metric space through example which supports our result.

Example 3.1. ConsiderX = [0, 1] andm : X → [0,∞) withm(x, y) =
x+ y

2
. Then the mapping T : X → X is defined as T (x) =

x2

3
. Here

N(x, Ty) = min{m(x, y),m(Tx, y),m(x, Ty),m(Tx, Ty)}

= min
{x+ y

2
,
x2 + 3y

6
,
3x+ y2

6
,
x2 + y2

6

}
By theorem

ζ(m(Tx, Ty),m(x, y) + θN(x, y)) ≥ 0.

That is

m(x, y) + θN(x, y)−m(Tx, Ty) ≥ 0.

In this example we will discuss three cases.

Case(1) If x = 0 and y = 0 then the result is obvious.

Case(2) If x = 1 and y = 1. Then m(T (1), T (1)) = m
(1

3
,
1

3

)
=

1

3
and

m(1, 1) + θN(1, 1) =
1

2
+ θ

1

3
. Obviously m(1, 1) + θN(1, 1) −

m(T (1), T (1)) ≥ 0.
Case(3) If x ∈ [0, a) and y ∈ (b, 1] where 0 < a < b < 1.

In this case

N(a, b) = min{m(a, b),m(Ta, b),m(a, T b),m(Ta, Tb)}

= min
{a+ b

2
,
a2 + 3b

6
,
3a+ b2

6
,
a2 + b2

6

}
=

a2 + b2

6
.

ζ(m(Ta, Tb),m(a, b) + θN(a, b)) ≥ 0.

m(a, b) + θN(a, b)−m(Ta, Tb) =
a+ b

2
+ θ

a2 + b2

6
− a2 + b2

6
≥ 0.

In all the cases T satisfies the hypothesis of theorem 2.1, and so T
has a fixed point. That is FixT (X) 6= ∅.
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