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QUASI HEMI-SLANT SUBMANIFOLDS OF

COSYMPLECTIC MANIFOLDS

Rajendra Prasad, Sandeep Kumar Verma, Sumeet Kumar,
and Sudhakar K Chaubey∗

Abstract. We introduce and study quasi hemi-slant submanifolds
of almost contact metric manifolds (especially, cosymplectic mani-
folds) and validate its existence by providing some non-trivial ex-
amples. Necessary and sufficient conditions for integrability of dis-
tributions, which are involved in the definition of quasi hemi-slant
submanifolds of cosymplectic manifolds, are obtained. Also, we in-
vestigate the necessary and sufficient conditions for quasi hemi-slant
submanifolds of cosymplectic manifolds to be totally geodesic and
study the geometry of foliations determined by the distributions.

1. Introduction

In the past two decades, almost contact geometry and related topics
has been a rich research field for geometers due to its application in wide
areas of physics as well as in mathematics. The notion of geometry of
submanifolds begin with the idea of the extrinsic geometry of surface and
it is developed for ambient space in the course of time. Nowadays this
theory plays a key role in computer design, image processing, economic
modeling as well as in mathematical physics and in mechanics.
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The slant submanifolds are the natural generalization of holomorphic
and totally real submanifolds. B. Y. Chen defined and study the slant
submanifolds in 1990 and consequent results on slant submanifolds were
collected in his book [10]. Since then, this interesting subject has been
studied broadly by several geometers during last two decades (for in-
stance, [20], [21], [25]). In 1996, A. Lotta [17] introduced the notion
of slant immersion of a Riemannian manifold into an almost contact
metric manifold. Further, the slant submanifolds were generalized as
semi-slant submanifolds, pseudo-slant submanifolds, bi-slant submani-
folds, and hemi-slant submanifolds etc. in different kinds of differentiable
manifolds (see, [1], [2], [13], [16], [22], [24]- [26]).

After the very remarkable work of Chinea et al. [11], cosymplectic
manifold has became of great interest in the last years. In nowadays,
the importance of this manifold for the geometric description of time-
dependent mechanics (see, [4], [12]) is widely recognized (especially in
the formulations of time dependent mechanics cosymplectic manifold do
play a major role). Recently, Ayar et al. [3] studied the properties of
cosymplectic manifolds.

Motivated from above studies, we introduce the notion of quasi hemi-
slant submanifolds of almost contact metric manifolds which include the
classes of semi-slant and hemi-slant submanifolds as its particular cases.
The present paper is organized as follows: We mention basic definitions
and some properties of almost contact metric manifolds in Section 2.
In Section 3, we define quasi hemi-slant submanifolds of cosymplectic
manifolds and derive some basic results for these submanifolds. Section
4 deals with necessary and sufficient conditions for integrability of dis-
tributions. In Section 5, the geometry of fibers are investigated. In the
last section, we provide some non-trivial examples of quasi hemi-slant
submanifolds of cosymplectic manifolds.

2. Preliminaries

We consider M̂ is a (2n + 1)-dimensional almost contact manifold
[14] which carries a tensor field φ of the tangent space, 1-form η and
characteristic vector field ξ satisfying

(1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,
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where I : TM̂ −→ TM̂ is the identity map. We have from definition,
φξ = 0, η ◦ φ = 0 and rank(φ) = 2n. Since an almost contact manifold

(M̂, φ, ξ, η) admits a Riemannian metric g such that

(2) g(φX, φY ) = g(X, Y )− η(X)η(Y )

for any vector fields X, Y ∈ Γ(TM̂), where Γ(TM̂) represents the Lie

algebra of vector fields on M̂ . A manifold M̂ together with the structure
(φ, ξ, η, g) is called an almost contact metric manifold. The immediate
consequence of (1) and (2) give

η(X) = g(X, ξ) and g(φX, Y ) + g(X,φY ) = 0

for all vector fields X, Y ∈ Γ(TM̂).
An almost contact structure (φ, ξ, η, g) is said to be normal [7] if the

almost complex structure J on the product manifold M̂ ×R is given by

J(U, f
d

dt
) = (φU − fξ, η(U)

d

dt
),

where J2 = −I and f is a differentiable function on M̂ × R has no
torsion, i.e., J is integrable. The condition for normality in terms of φ,

ξ and η is [φ, φ] + 2dη⊗ ξ = 0 on M̂, where [φ, φ] is the Nijenhuis tensor
of φ.

An almost contact metric manifold is called a cosymplectic manifold

([8], [23]) if (∇̂Xφ)Y = 0, ∇̂Xξ = 0 ∀ X, Y ∈ Γ(TM̂), where ∇̂ repre-

sents the Levi-Civita connection of (M̂, g).
The covariant derivative of φ is defined as

(∇̂Xφ)Y = ∇̂XφY − φ∇̂XY.

If M̂ is a cosymplectic manifold, then we have

(3) φ∇̂XY = ∇̂XφY.

Let M be a Riemannian manifold isometrically immersed in M̂ and
the induced Riemannian metric on M is denoted by the same symbol
g throughout this paper. Let A and h denote the shape operator and

second fundamental form, respectively, of submanifolds of M into M̂.
The Gauss and Weingarten formulas are given by

(4) ∇̂XY = ∇XY + h(X, Y )
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and

(5) ∇̂XV = −AVX +∇⊥XV
for any vector fields X, Y ∈ Γ(TM) and V on Γ(T⊥M), where ∇ is
the induced connection on M and ∇⊥ represents the connection on the
normal bundle T⊥M of M and AV is the shape operator of M with
respect to normal vector V ∈ Γ(T⊥M). Moreover, AV and the second

fundamental form h : TM ⊗ TM −→ T⊥M of M into M̂ are related by

g(h(X, Y ), V ) = g(AVX, Y ),

for any vector fields X, Y ∈ Γ(TM) and V on Γ(T⊥M).
The mean curvature vector H is defined by

H =
1

n
trace(h) =

1

n

n∑
i=1

h(ei, ei),

where n denotes the dimension of submanifold M and {e1, e2, ...., en} is
the local orthonormal basis of tangent space at each point of M.

For any X ∈ Γ(TM), we can write

(6) φX = TX +NX,

where TX and NX are the tangential and normal components of φX
on M , respectively. Similarly for any V ∈ T⊥M , we have

(7) φV = tV + nV,

where tV and nV are the tangential and normal components of φV on
M , respectively.

A submanifold M of a cosymplectic manifold M̂ is said to be totally
umbilical if

h(X, Y ) = g(X, Y )H.

If h(X, Y ) = 0 for all X, Y ∈ Γ(TM), then M is said to be totally
geodesic and if H = 0, then M is called a minimal submanifold.

The covariant derivative of projection morphisms in (6) and (7) are
defined as

(∇̂XT )Y = ∇XTY − T∇XY,

(∇̂XN)Y = ∇⊥XNY −N∇XY,

(∇̂Xt)V = ∇XtV − t∇⊥XV
and

(∇̂Xn)V = ∇⊥XnV − n∇⊥XV
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for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

Definition 2.1. Let M be a Riemannian manifold isometrically im-

mersed in an almost contact metric manifold M̂. A submanifold M
of an almost contact metric manifold M̂ is said to be invariant [6] if
φ (TxM) ⊆ TxM, for every point x ∈M.

Definition 2.2. A submanifold M of an almost contact metric man-
ifold M̂ is said to be anti-invariant [15] if φ (TxM) ⊆ T⊥x M, for every
point x ∈M.

Definition 2.3. A submanifold M of an almost contact metric man-
ifold M̂ is said to be slant [9], if for each non-zero vector X tangent to
M at x ∈ M, linearly independent on ξ the angle θ(X) between φX
and TxM is constant, i.e., it does not depend on the choice of the point
x ∈ M and X ∈ TxM. In this case, the angle θ is called the slant an-
gle of the submanifold. A slant submanifold M is called proper slant
submanifold if neither θ = 0 nor θ = π

2
.

We note that on a slant submanifold M if θ = 0, then it is an invariant
submanifold and if θ = π

2
, then it is an anti-invariant submanifold. This

means that the slant submanifold is a generalization of invariant and
anti-invariant submanifolds.

Definition 2.4. A submanifold M of an almost contact metric man-
ifold M̂ is said to be semi-invariant [5], if there exist two orthogonal
complementary distributions D1 and D2 on M such that

TM = D1 ⊕D2⊕ < ξ >,

where D1 is invariant and D2 is anti-invariant.

Definition 2.5. A submanifold M of an almost contact metric man-
ifold M̂ is said to be semi-slant [18], if there exist two orthogonal com-
plementary distributions D and Dθ on M such that

TM = D ⊕Dθ⊕ < ξ >,

where D is invariant and Dθ is slant with slant angle θ. In this case, the
angle θ is called semi-slant angle.

Definition 2.6. A submanifold M of an almost contact metric man-
ifold M̂ is said to be hemi-slant [22], if there exist two orthogonal com-
plementary distributions Dθ and D⊥ on M such that

TM = Dθ ⊕D⊥⊕ < ξ >,
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where Dθ is slant with slant angle θ and D⊥ is anti-invariant. In this
case, the angle θ is called hemi-slant angle.

3. Quasi hemi-slant submanifolds of cosymplectic manifolds

In this section, we introduce and study quasi hemi-slant submanifolds
of cosymplectic manifolds.

Definition 3.1. A submanifold M of an almost contact metric man-
ifold M̂ is called a quasi hemi-slant submanifold if there exist distribu-
tions D, Dθ and D⊥ such that
(i) TM admits the orthogonal direct decomposition as

TM = D ⊕Dθ ⊕D⊥⊕ < ξ > .

(ii) The distribution D is φ invariant, i.e., φD = D.
(iii) For any non-zero vector field X ∈ (Dθ)p, p ∈M, the angle θ between
JX and (Dθ)p is constant and independent of the choice of point p and
X in (Dθ)p.
(iv) The distribution D⊥ is φ anti-invariant, i.e., φD⊥ ⊆ T⊥M .

In this case, we call θ the quasi hemi-slant angle of M . Suppose the
dimension of distributions D, Dθ and D⊥ are n1, n2 and n3, respectively.
Then we can easily see the following particular cases:
(i) If n1 = 0, then M is a hemi-slant submanifold.
(ii) If n2 = 0; then M is a semi-invariant submanifold.
(iii) If n3 = 0, then M is a semi-slant submanifold.
We say that a quasi hemi-slant submanifold M is proper if D 6= {0},
D⊥ 6= {0} and θ 6= 0, π

2
.

This means that the notion of quasi hemi-slant submanifold is a gen-
eralization of invariant, anti-invariant, semi-invariant, slant, hemi-slant,
semi-slant submanifolds.

Remark 3.2. The definition can be generalized by taking TM =
D ⊕Dθ1 ⊕Dθ2 ... ⊕Dθk⊕ < ξ > . Hence we can define multi-slant sub-
manifolds, quasi multi-slant submanifolds, quasi hemi multi-slant sub-
manifolds, etc.

Let M be a quasi hemi-slant submanifold of an almost contact metric

manifold M̂ . We denote the projections of X ∈ Γ(TM) on the distribu-
tions D, Dθ and D⊥ by P , Q and R, respectively. Then we can write
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for any X ∈ Γ(TM)

(8) X = PX +QX +RX + η (X) ξ.

Now we put

(9) φX = TX +NX,

where TX and NX are tangential and normal components of φX on M .
Using (8) and (9), we obtain

φX = TPX +NPX + TQX +NQX + TRX +NRX.

Since φD = D and φD⊥ ⊆ T⊥M , we have NPX = 0 and TRX = 0.
Therefore, we get

(10) φX = TPX + TQX +NQX +NRX.

Then for any X ∈ Γ(TM), it is easy to see that

TX = TPX + TQX

and
NX = NQX +NRX.

Thus from (10) , we have the following decomposition

φ(TM) = D ⊕ TDθ ⊕NDθ ⊕ND⊥,
where ‘⊕’ denotes orthogonal direct sum. Since NDθ ⊂ (T⊥M) and
ND⊥ ⊂ (T⊥M), we have

T⊥M = NDθ ⊕ND⊥ ⊕ µ,
where µ is the orthogonal complement of NDθ ⊕ND⊥ in Γ(T⊥M) and
it is invariant with respect to φ. For any non-zero vector field V ∈
Γ(T⊥M), we put

(11) φV = tV + nV,

where tV ∈ (Dθ ⊕D⊥) and nV ∈ Γ(µ). For X, Y ∈ TM we have

∇XTY − ANYX − T∇XY − t h (X, Y ) = 0

h (X,TY ) +∇⊥XNY −N (∇XY )− nh (X, Y ) = 0.

and

TD = D, TDθ = Dθ, TD⊥ = {0}, tNDθ = Dθ, tND⊥ = D⊥.

From equations (1), (9) and (11), we can easily observe that the endo-
morphism T , the projection morphisms N , t and n in the tangent bundle
of M satisfy
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(i) T 2 + tN = −I + η ⊗ ξ and NT + nN = 0 on TM ,
(ii) Nt+ n2 = −I and Tt+ tn = 0 on (T⊥M),

(∇̂XT )Y = ANYX + th (X, Y ) , (∇̂XN)Y = nh(X, Y )− h(X,TY ),

and

(∇̂Xt)V = AnVX − TAVX (∇̂Xn)V = −h(X, tV )−NAVX
for any X, Y ∈ Γ (TM) and V ∈ Γ(T⊥M).

Lemma 3.3. Let M be a quasi hemi-slant submanifold of an almost

contact metric manifold M̂. Then
(i) T 2X = −(cos2 θ)X,
(ii) g(TX, TY ) = (cos2 θ)g(X, Y ),
(iii) g(NX,NY ) = (sin2 θ)g(X, Y )
for any X, Y ∈ Dθ.

Proof. The proof follows using similar steps as in Proposition 2.8 of
[19].

Lemma 3.4. Let M be a quasi hemi-slant submanifold of a cosym-

plectic manifold M̂, then

AφZW = AφWZ − T ([W,Z]) and ∇⊥ZφW −∇⊥WφZ = N([Z,W ])

for all Z,W ∈ D⊥.
Proof. Let Z,W ∈ D⊥, then

(∇̂Zφ)W = ∇̂Z(φW )− φ(∇̂ZW )

=⇒ 0 = −AφWZ+∇⊥ZφW−T (∇ZW )−N(∇ZW )−th(Z,W )−nh(Z,W ).

Comparing tangential and normal parts in the above equation, we get

(12) − AφWZ − T (∇ZW )− th(Z,W ) = 0

(13) ∇⊥ZφW −N(∇ZW )− nh(Z,W ) = 0

From equations (12) and (13), we can easily get the statement of Lemma
3.4.

Lemma 3.5. Let M be a quasi hemi-slant submanifold of a cosym-

plectic manifold M̂, then
(i) g ([X, Y ] , ξ) = 0,

(ii) g
(
∇̂XY, ξ

)
= 0

for all X, Y ∈
(
D ⊕Dθ ⊕D⊥

)
.
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4. Integrability of distributions

In this section, we investigate integrability conditions for the distri-
butions involved in the definition of quasi hemi-slant submanifolds of
cosymplectic manifolds.

Theorem 4.1. Let M be a proper quasi hemi-slant submanifold of a

cosymplectic manifold M̂. Then the invariant distributionD is integrable
if and only if

g(∇XTY −∇Y TX, TQZ) = g(h(Y, TX)− h(X,TY ), NQZ +NRZ)

for any X, Y ∈ Γ(D) and Z ∈ Γ(Dθ ⊕D⊥).

Proof. We know that for a cosymplectic manifold,

(14) ∇̂Xξ = 0 ∀ X ∈ Γ(D).

If Y ∈ Γ(D), then g(Y, ξ) = 0. The covariant of this equation along X
gives

(15) g(∇̂XY, ξ) + g(Y, ∇̂Xξ) = 0.

Now, g([X, Y ], ξ) = g(∇̂XY, ξ) − g(∇̂YX, ξ) = 0, where equations (14)
and (15) are used. Next, for any X, Y ∈ Γ(D) and Z = QZ + RZ ∈
Γ(Dθ ⊕D⊥), using (2), (3) , (4) and (9), we have

g([X, Y ], Z) = g(∇̂XφY, φZ)− g(∇̂Y φX, φZ) = g(∇XTY

−∇Y TX, TQZ) + g(h(X,TY )− h(Y, TX), NQZ +NRZ).

This completes the proof.

Theorem 4.2. Let M be a proper quasi hemi-slant submanifold of

a cosymplectic manifold (M̂, g, φ). Then the slant distribution Dθ is
integrable if and only if

g(ANWZ − ANZW,TPX) = g(ANTWZ − ANTZW,X)

+g(∇⊥ZNW −∇⊥WNZ,NRX)

for any Z, W ∈ Γ(Dθ) and X ∈ Γ(D ⊕D⊥).

Proof. For any Z, W ∈ Γ(Dθ) and X = PX + RX ∈ Γ(D ⊕ D⊥),
using (2), (3) and (9), we obtain

g([Z,W ], X) = g(∇̂ZNW,φX)− g(∇̂ZφTW,X)

−g(∇̂WNZ, φX) + g(∇̂WφTZ,X).
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Then from (5), (9) and Lemma 3.3, we have

g([Z,W ], X) = −g(ANWZ − ANZW,φX) + cos2 θg([Z,W ], X)

+g(ANTWZ − ANTZW,X) + g(∇⊥ZNW −∇⊥WNZ, φX),

which leads to

sin2 θg([Z,W ], X) = g(ANTWZ − ANTZW,X) + g(∇⊥ZNW
−∇⊥WNZ,NRX)− g(ANWZ − ANZW,TPX).

Thus the proof is completed.

From Theorem 4.2, we have the following sufficient conditions for the
slant distribution Dθ to be integrable.

Theorem 4.3. Let M be a proper quasi hemi-slant submanifold of a

cosymplectic manifold M̂ . If

∇⊥ZNW −∇⊥WNZ ∈ NDθ ⊕ µ,
ANTWZ − ANTZW ∈ Dθ, and

ANWZ − ANZW ∈ D⊥ ⊕Dθ

for any Z,W ∈ Γ(Dθ), then the slant distribution Dθ is integrable.

Theorem 4.4. Let M be a quasi hemi-slant submanifold of a cosym-

plectic manifold M̂. Then the anti-invariant distribution D⊥ is integrable
if and only if

g(T ([Z,W ]), TX) = g(∇⊥WNZ −∇⊥ZNW,NQX)

for any Z,W ∈ Γ(D⊥) and X ∈ Γ(D ⊕Dθ).

Proof. For any Z,W ∈ Γ(D⊥) and X = PX + QX ∈ Γ(D ⊕ Dθ),
using (2), (3) , (5) , (9) and Lemma 3.4, we obtain

g([Z,W ], X) = g(∇̂Z φW, φX)− g(∇̂W φZ, φX)

= g(AφZW − AφWZ, TPX + TQX) + g(∇⊥ZφW −∇⊥WφZ,NQX)

= g(T ([Z,W ]), TX) + g(∇⊥ZNW −∇⊥WNZ,NQX).

The above equation together with Lemma 3.5 prove the statement of
Theorem 4.4.
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5. Totally Geodesic Foliations

Geodesicness and foliations are significant geometric notions. In this
section, the geometry of foliations of a quasi hemi-slant submanifold is
investigated. Also, some conditions are given for the totally geodesicness.

Theorem 5.1. Let M be a proper quasi hemi-slant submanifold of a

cosymplectic manifold M̂. Then M is totally geodesic if and only if

g(h(X,PY ) + cos2 θh(X,QY ), U) = g(∇⊥XNTQY,U)

+g(ANQYX + ANRYX, tU)− g(∇⊥XNY, nU)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Proof. For any X, Y ∈ Γ(TM), U ∈ Γ
(
T⊥M

)
and using (2) and (3),

we have

g(∇̂XY, U) = g(∇̂XPY, U) + g(∇̂XQY,U) + g(∇̂XRY,U)

= g(∇̂XφPY, φU) + g(∇̂XTQY, φU) + g(∇̂XNQY, φU)

+g(∇̂XφRY, φU).

Using (2), (4), (5), (9) and Lemma 3.3, we have

g(∇̂XY, U) = g(∇̂XPY, U)− g(∇̂XT
2QY,U)− g(∇̂XNTQY,U)

+g(∇̂XNQY, φU) + g(∇̂XNRY, φU)

= g(h(X,PY ), U) + cos2 θg(h(X,QY ), U)− g(∇⊥XNTQY,U)

+g(−ANQYX +∇⊥XNQY, φU) + g(−ANRYX +∇⊥XNRY, φU).

As NY = NPY +NQY +NRY and NPY = 0. Thus we have

g(∇̂XY, U) = g(h(X,PY ) + cos2 θh(X,QY ), U)− g(∇⊥XNTQY,U)

−g(ANQYX + ANRYX, tU) + g(∇⊥XNY, nU).

Hence the proof follows.

Theorem 5.2. Let M be a proper quasi hemi-slant submanifold of

a cosymplectic manifold M̂. Then anti-invariant distribution D⊥ defines
totally geodesic foliation if and only if

g(AφYX,TPZ+tQZ) = g(∇⊥XφY , nQZ), g(AφYX, tV ) = g(∇⊥XφY, nV )

for any X, Y ∈ Γ(D⊥), Z ∈ Γ(D ⊕Dθ) and V ∈ Γ
(
T⊥M

)
.
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Proof. For any X, Y ∈ Γ(D⊥), Z = PZ + QZ ∈ Γ(D ⊕ Dθ), using
(2), (3) , (9) and the fact that M is cosymplectic, we have

g(∇̂XY, Z) = g(∇̂XφY, φZ) = g(∇̂XφY, φPZ + φQZ)

= g(−AφYX +∇⊥XφY , TPZ + tQZ + nQZ)

= −g(AφYX,TPZ + tQZ) + g(∇⊥XφY , nQZ).(16)

Again, let X, Y ∈ Γ(D⊥) and V ∈ Γ(T⊥M), then we have

g(∇̂XY, V ) = g(∇̂XφY, φV )

= g(−AφYX +∇⊥XφY , tV + nV )

= −g(AφYX, tV ) + g(∇⊥XφY , nV ).(17)

Also, g(∇̂XY, ξ) = 0. From equations (16) and (17), it is obvious thatD⊥

defines totally geodesic foliation if and only if g(AφYX,TPZ + tQZ) =
g(∇⊥XφY , nQZ) and g(AφYX, tV ) = g(∇⊥XφY, nV ). Hence the statement
of the Theorem 5.2.

Theorem 5.3. Let M be a proper quasi hemi-slant submanifold of

a cosymplectic manifold M̂. Then the slant distribution Dθ defines a
totally geodesic foliation on M if and only if

g(∇⊥XNY,NRZ) = g(ANYX,TPZ)− g(ANTYX,Z), and

g(ANYX, tV ) = g(∇⊥XNY, nV )− g(∇⊥XNTY, V )

for any X, Y ∈ Γ(Dθ), Z ∈ Γ(D ⊕D⊥) and V ∈ Γ
(
T⊥M

)
.

Proof. For any X, Y ∈ Γ(Dθ), Z = PZ+RZ ∈ Γ(D⊕D⊥) and using
(2), (3) and (9), we have

g(∇̂XY, Z) = g(∇̂XφY, φZ) = g(∇̂XTY, φZ) + g(∇̂XNY, φZ)

= −g(∇̂XT
2Y, Z)− g(∇̂XNTY,Z) + g(∇̂XNY, TPZ +NRZ).

Then using (5) , (9) and Lemma 3.3, and the fact that NPZ = 0, we
have

g(∇̂XY, Z) = cos2 θg(∇̂XY, Z) + g(ANTYX,Z)

−g(ANYX,TPZ) + g(∇⊥XNY,NRZ),

sin2 θg(∇̂XY, Z) = g(ANTYX,Z)(18)

−g(ANYX,TPZ) + g(∇⊥XNY,NRZ).
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Similarly, we get
(19)

sin2 θg(∇̂XY, V ) = −g(∇⊥XNTY, V )− g(ANYX, tV ) + g(∇⊥XNY, nV ).

Thus from (18) and (19), we have the assertions.

Theorem 5.4. Let M be a proper quasi hemi-slant submanifold of

a cosymplectic manifold M̂. Then the invariant distribution D defines a
totally geodesic foliation on M if and only if

g(∇XTY, TQZ) = −g(h(X,TY ), NQZ +NRZ), and

g(∇XTY, TU) = −g(h(X,TY ), nU)

for any X, Y ∈ Γ(D), Z ∈ Γ(Dθ ⊕D⊥) and U ∈ Γ
(
T⊥M

)
.

Proof. For any X, Y ∈ Γ(D), Z = QZ+RZ ∈ Γ(Dθ⊕D⊥) and using
(2), (3) , (9) and NY = 0, we have

g(∇̂XY, Z) = g(∇̂XTY, φZ),

= g(∇XTY, TQZ) + g(h(X,TY ), NQZ +NRZ).

Now for any U ∈ Γ
(
T⊥M

)
and X, Y ∈ Γ(D), we have

g(∇̂XY, U) = g(∇̂XTY, φU)

= g(∇XTY, tU) + g(h(X,TY ), nU).

Hence the proof.

6. Examples

Example 6.1. Consider a 15-dimensional differentiable manifold

M = {(xi, yi,z) = (x1, x2, ..., x7, y1, y2, ..., y7, z) ∈ R15}.
We choose the vector fields

Ei =
∂

∂yi
, E7+i =

∂

∂xi
, E15 = ξ =

∂

∂z
, for i = 1, 2, ..., 7.

Let g be a Riemannian metric defined by

g = (dx1)
2 + (dx2)

2 + ...+ (dx7)
2 + (dy1)

2 + (dy2)
2 + ...+ (dy7)

2 + (dz)2.

Then we find that g (Ei, Ei) = 1 and g (Ei, Ej) = 0, for 1 ≤ i 6= j ≤ 15.
Hence {E1, E2, ..., E15} forms an orthonormal basis. Thus 1-form η = dz
is defined by η(E) = g (E, ξ) , for any E ∈ Γ(TM).
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We define (1, 1)-tensor field φ as

φ

(
∂

∂xi

)
=

∂

∂yi
, φ

(
∂

∂yj

)
= − ∂

∂xj
, φ

(
∂

∂z

)
= 0 ∀ i, j = 1, 2, ..., 7.

By using linearity of φ and g, we have

φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X, Y )− η(X)η(Y ), for any X, Y ∈ Γ(TM).

Hence (M,φ, ξ, η, g) is an almost contact metric manifold. Also, we can
easily show that (M,φ, ξ, η, g) is a cosymplectic manifold of dimension
15.

Now, we consider a submanifold M of M defined by immersion f as
follows:

f (u, v, w, r, s, t, q) =

(
u,w, 0,

s√
2
, 0,

t√
2
, 0, v, r cos θ, r sin θ, 0,

s√
2
, 0,

t√
2
, q

)
,

where 0 < θ < π
2
. By direct computation, it is easy to check that the

tangent bundle of M is spanned by the set {Z1, Z2, Z3, Z4, Z5, Z6, Z7},
where

Z1 =
∂

∂x1
, Z2 =

∂

∂y1
, Z3 =

∂

∂x2
,

Z4 = cos θ
∂

∂y2
+ sin θ

∂

∂y3
, Z5 =

1√
2

(
∂

∂x4
+

∂

∂y5

)
,

Z6 =
1√
2

(
∂

∂x6
+

∂

∂y7

)
, Z7 =

∂

∂z
.

Then using almost contact structure of M , we have

φZ1 =
∂

∂y1
, φZ2 = − ∂

∂x1
, φZ3 =

∂

∂y2
,

φZ4 = −
(

cos θ
∂

∂x2
+ sin θ

∂

∂x3

)
, φZ5 =

1√
2

(
∂

∂y4
− ∂

∂x5

)
,

φZ6 =
1√
2

(
∂

∂y6
− ∂

∂x7

)
, φZ7 = 0.

Now, let the distributionsD = Span{Z1, Z2}, Dθ = Span{Z3, Z4}, D⊥ =
Span{Z5, Z6}. It is easy to see that D is invariant, Dθ is slant with slant
angle θ and D⊥ is anti-invariant.
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Example 6.2. Let (M,φ, ξ, η, g) be a cosymplectic manifold of di-
mension 15 as defined in Example 6.1. Suppose N be a submanifold M
(see, Example 6.1) defined by immersion ψ as follows:

ψ (u, v, w, r, s, t, q) =

(
u√
2
, w, 0,

s√
2
, 0, t,

u√
2
,
v√
2
,
r√
2
,
r√
2
, 0,

s√
2
, 0,

v√
2
, q

)
.

By direct computation, it is easy to check that the tangent bundle of N
is spanned by the set {X1, X2, X3, X4, X5, X6, X7}, where

X1 =
1√
2

(
∂

∂x1
+

∂

∂x7

)
, X2 =

1√
2

(
∂

∂y1
+

∂

∂y7

)
, X3 =

∂

∂x2
,

X4 =
1√
2

(
∂

∂y2
+

∂

∂y3

)
, X5 =

1√
2

(
∂

∂x4
+

∂

∂y5

)
,

X6 =
∂

∂x6
, X7 =

∂

∂z
.

Then using almost contact structure of M , we have

φX1 =
1√
2

(
∂

∂y1
+

∂

∂y7

)
, φX2 = − 1√

2

(
∂

∂x1
+

∂

∂x7

)
, φX3 =

∂

∂y2
,

φX4 = − 1√
2

(
∂

∂x2
+

∂

∂x3

)
, φX5 =

1√
2

(
∂

∂y4
− ∂

∂x5

)
,

φX6 =
∂

∂y6
, φX7 = 0.

Now, let the distributionsD = Span{X1, X2}, Dθ = Span{X3, X4}, D⊥ =
Span{X5, X6}. It is easy to conclude that D is invariant, Dθ is slant with
slant angle π

4
and D⊥ is anti-invariant.
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