INEQUALITIES FOR THE DERIVATIVE OF POLYNOMIALS WITH RESTRICTED ZEROS

N. A. Rather, Ishfaq Dar*, and A. Iqbal

Abstract. For a polynomial $P(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ of degree n having all its zeros in $|z| \leq k, k \geq 1$, it was shown by Rather and Dar [13] that

$$
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)| .
$$

In this paper, we shall obtain some sharp estimates, which not only refine the above inequality but also generalize some well known Turán-type inequalities.

1. Introduction and Statement of results

Let \mathcal{P}_{n} denote the class of all algebraic polynomials of the form $P(z)=$ $\sum_{j=o}^{n} a_{j} z^{j}$ of degree $n \geq 1$. It was shown by P. Turán [17] that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1}
\end{equation*}
$$

Equality in (1) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.
As an extension of (1), Govil [8] proved that if $P \in \mathcal{P}_{n}$ and $P(z)$ has
Received March 21, 2020. Revised December 4, 2020. Accepted December 9, 2020.

2010 Mathematics Subject Classification: 26D10, 41A17, 30C15.
Key words and phrases: Polynomials, Schwarz lemma, Inequalities in the complex domain.

* Corresponding author.
(C) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

The result is sharp as shown by the polynomial $P(z)=z^{n}+k^{n}$.
By involving the minimum modulus of $P(z)$ on $|z|=1$, Aziz and Dawood [2], proved under the hypothesis of inequality (1) that

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\max _{|z|=1}|P(z)|+\min _{|z|=1}|P(z)|\right\} \tag{3}
\end{equation*}
$$

Equality in (3) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.
Dubinin [7] obtained a refinement of (1) by involving some of the coefficients of polynomial $P \in \mathcal{P}_{n}$ in the bound of inequality (1). More precisely, proved that if all the zeros of the polynomial $P \in \mathcal{P}_{n}$ lie in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{2}\left(n+\frac{\left|a_{n}\right|-\left|a_{0}\right|}{\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)| . \tag{4}
\end{equation*}
$$

Rather and Dar [13] generalized this inequality and proved that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)| . \tag{5}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+k^{n}$.
In literature, there exist several generalizations and extensions of (1), (2), (3) and (4) (see [1]- [5], [10], [12]- [16]). In this paper, we are interested in estimating the lower bound for the maximum modulus of $P^{\prime}(z)$ on $|z|=1$ for $P \in \mathcal{P}_{n}$ not vanishing in the region $|z|>k$ where $k \geq 1$ and establish some refinements and generalizations of the inequalities (1), (2), (3), (4) and (5). We begin by proving the following refinement of inequality (5):

Theorem 1.1. If all the zeros of polynomial $P \in \mathcal{P}_{n}$ of degree $n \geq 2$ lie in $|z| \leq k, k \geq 1$, then
$\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)\left(\max _{|z|=1}|P(z)|+\frac{\left|a_{n-1}\right| \phi(k)}{k}\right)+\left|a_{1}\right| \psi(k)$,
where $\phi(k)=\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right)$ or $\frac{(k-1)^{2}}{2}$ and $\psi(k)=\left(1-1 / k^{2}\right)$ or $(1-$ $1 / k)$ according as $n>2$ or $n=2$.
The result is best possible and equality in (6) holds for $P(z)=z^{n}+k^{n}$.
Remark 1.2. Since $\phi(k)$ and $\psi(k)$ are non-negative, hence it clearly follows that inequality (6) refines inequality (5). Further for $k=1$, inequality (6) reduces to inequality (4).

Theorem 1.3. If all the zeros of polynomial $P \in \mathcal{P}_{n}$ of degree $n \geq 2$ lie in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for $0 \leq l<1$

$$
\begin{align*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq & \frac{n}{1+k^{n}}\left(\max _{|z|=1}|P(z)|+l m\right)+\psi(k)\left|a_{1}\right| \tag{7}\\
& +\frac{1}{k^{n}\left(1+k^{n}\right)}\left\{\left(\frac{k^{n}\left|a_{n}\right|-l m-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-l m+\left|a_{0}\right|}\right)\left(k^{n} \max _{|z|=1}|P(z)|-l m\right)\right. \\
& \left.+k^{n-1}\left|a_{n-1}\right| \phi(k)\left(n+\frac{k^{n}\left|a_{n}\right|-l m-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-l m+\left|a_{0}\right|}\right)\right\},
\end{align*}
$$

where $\phi(k)$ and $\psi(k)$ are same as defined in Theorem 1.1.
The result is sharp and equality in (7) holds for $P(z)=z^{n}+k^{n}$.
Remark 1.4. As before, it can be easily seen that Theorem 1.3 is a refinement of Theorem 1.1. Moreover, for $k=1$, we get the following refinement of inequality (4).

Corollary 1.5. If all the zeros of $P \in \mathcal{P}_{n}$ of degree $n \geq 2$, lie in $|z| \leq 1$ and $m_{1}=\min _{|z|=1}|P(z)|$, then for $0 \leq l<1$

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{\max _{|z|=1}|P(z)|+l m_{1}\right\}+\frac{1}{2}\left(\frac{\left|a_{n}\right|-l m_{1}-\left|a_{0}\right|}{\left|a_{n}\right|-l m_{1}+\left|a_{0}\right|}\right)\left(\max _{|z|=1}|P(z)|-l m_{1}\right), \tag{8}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=\left(z^{n}+1\right)$.

2. Lemmas

For the proof of these theorems, we need the following lemmas. The first Lemma is due to Erdös and Lax [9]

Lemma 2.1. If $P \in \mathcal{P}_{n}$ does not vanish in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{9}
\end{equation*}
$$

Next Lemma is a special case of a result due to Aziz and Rather [3,4].
Lemma 2.2. If $P \in \mathcal{P}_{n}$ and $P(z)$ has its all zeros in $|z| \leq 1$ and $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then for $|z|=1$,

$$
\left|Q^{\prime}(z)\right| \leq\left|P^{\prime}(z)\right|
$$

The following result is due to Frappier, Rahman and Ruscheweyh [6].
Lemma 2.3. If $P \in \mathcal{P}_{n}$ is a polynomial of degree $n \geq 1$, then for $R \geq 1$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)|-\left(R^{n}-R^{n-2}\right)|P(0)| \quad \text { if } \quad n>1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R \max _{|z|=1}|P(z)|-(R-1)|P(0)| \quad \text { if } \quad n=1 \tag{11}
\end{equation*}
$$

From above lemma, we deduce:
Lemma 2.4. If $P \in \mathcal{P}_{n}=a_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree $n \geq 2$ having no zeros in $|z|<1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \max _{|z|=R}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|-|\alpha| \frac{R^{n}-1}{2} \min _{|z|=1}|P(z)| \tag{12}\\
&-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right| \quad \text { if } \quad n>2
\end{align*}
$$

and

$$
\begin{gather*}
\max _{|z|=R}|P(z)| \leq \frac{R^{2}+1}{2} \max _{|z|=1}|P(z)|-|\alpha| \frac{R^{2}-1}{2} \min _{|z|=1}|P(z)| \\
-\frac{(R-1)^{2}}{2}\left|P^{\prime}(0)\right| \quad \text { if } \quad n=2 . \tag{13}
\end{gather*}
$$

Proof of Lemma 2.4. By hypothesis all the zeros of $P(z)$ lie in $|z| \geq 1$. Let $m=\min _{|z|=1}|P(z)|$, then $m \leq|P(z)|$ for $|z|=1$. Applying Rouche's theorem, it follows that the polynomial $G(z)=P(z)+\alpha m z^{n}$ has all its zeros in $|z| \geq 1$ for every α with $|\alpha|<1$ (this is trivially true for $m=0$.) Now for each $\theta, 0 \leq \theta<2 \pi$, we have

$$
\begin{equation*}
G\left(R e^{i \theta}\right)-G\left(e^{i \theta}\right)=\int_{1}^{R} e^{i \theta} G^{\prime}\left(t e^{i \theta}\right) d t . \tag{14}
\end{equation*}
$$

This gives with the help of (10) of Lemma 2.3 and Lemma 2.1 for $n>2$,

$$
\begin{aligned}
& \left|G\left(R e^{i \theta}\right)-G\left(e^{i \theta}\right)\right| \\
& \leq \int_{1}^{R}\left|G^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \leq \frac{n}{2}\left(\int_{1}^{R} t^{n-1} d t\right) \max _{|z|=1}|G(z)|-\int_{1}^{R}\left(t^{n-1}-t^{n-3}\right) d t\left|G^{\prime}(0)\right| \\
& =\frac{R^{n}-1}{2} \max _{|z|=1}|G(z)|-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right|,
\end{aligned}
$$

so that for $n>2$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{aligned}
\left|G\left(R e^{i \theta}\right)\right| & \leq\left|G\left(R e^{i \theta}\right)-G\left(e^{i \theta}\right)\right|+\left|G\left(e^{i \theta}\right)\right| \\
& =\frac{R^{n}+1}{2} \max _{|z|=1}|G(z)|-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right| .
\end{aligned}
$$

Replacing $G(z)$ by $P(z)+\alpha m z^{n}$, we get for $|z|=1$,

$$
\begin{align*}
& \left|P(R z)+\alpha m R^{n} z^{n}\right| \\
& \leq \frac{R^{n}+1}{2} \max _{|z|=1}\left|P(z)+\alpha m z^{n}\right|-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right| . \tag{15}
\end{align*}
$$

Choosing argument of α in the left hand side of (15) suitably, we obtain for $n>2$ and $|z|=1$,

$$
\begin{aligned}
& |P(R z)|+|\alpha| m R^{n} \\
& \leq \frac{R^{n}+1}{2}\left\{\max _{|z|=1}|P(z)|+|\alpha| m\right\}-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right|
\end{aligned}
$$

equivalently for $n>2,|\alpha|<1$ and $|z|=1$, we have

$$
\begin{gathered}
|P(R z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|-|\alpha| \frac{R^{n}-1}{2} \min _{|z|=1}|P(z)| \\
-\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left|P^{\prime}(0)\right|,
\end{gathered}
$$

which proves inequality (12) for $n>2$ and $|\alpha|<1$. Similarly we can prove inequality (13) for $n=2$ by using (11) of Lemma 2.3 instead of (10). For $|\alpha|=1$, the result follows by continuity. This completes the proof of Lemma 2.4.

Finally we also need the Lemma due to Osserman [11], known as boundary Schwarz lemma.

Lemma 2.5. If
(a) $\quad f(z)$ is analytic for $|z|<1$,
(b) $|f(z)|<1$ for $|z|<1$,
(c) $f(0)=0$,
(d) for some b with $|b|=1, f(z)$ extends continuously to b, $|f(b)|=1$ and $f^{\prime}(b)$ exists.
Then

$$
\begin{equation*}
\left|f^{\prime}(b)\right| \geq \frac{2}{1+\left|f^{\prime}(0)\right|} \tag{16}
\end{equation*}
$$

3. Proof of the Theorems

Proof of Theorem 1.1. Let $g(z)=P(k z)$. Since all the zeros of $P(z)=a_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$ lie in $|z| \leq k$ where $k \geq 1, g(z)$ has all its zeros in $|z| \leq 1$ and hence all the zeros of the conjugate polynomial $g^{*}(z)=z^{n} g(1 / \bar{z})$ lie in $|z| \geq 1$.
Therefore, the function

$$
\begin{equation*}
F(z)=\frac{g(z)}{z^{n-1} \overline{g(1 / \bar{z})}}=z \frac{a_{n}}{\overline{a_{n}}} \prod_{j=1}^{n}\left(\frac{k z-z_{j}}{k-z \overline{z_{j}}}\right) \tag{17}
\end{equation*}
$$

is analytic in $|z|<1$ with $F(0)=0$ and $|F(z)|=1$ for $|z|=1$. Further for $|z|=1$, this gives

$$
\frac{z F^{\prime}(z)}{F(z)}=1-n+\frac{z g^{\prime}(z)}{g(z)}+\overline{\left(\frac{z g^{\prime}(z)}{g(z)}\right)}
$$

so that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z F^{\prime}(z)}{F(z)}\right)=1-n+2 \operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right) . \tag{18}
\end{equation*}
$$

Also, we have from (17)

$$
\frac{z F^{\prime}(z)}{F(z)}=1+\sum_{j=1}^{n}\left(\frac{k^{2}-\left|z_{j}\right|^{2}}{\left|k z-z_{j}\right|^{2}}\right)>0 \text { for }|z|=1
$$

as such,

$$
\frac{z F^{\prime}(z)}{F(z)}=\left|\frac{z F^{\prime}(z)}{F(z)}\right|=\left|F^{\prime}(z)\right| \quad \text { for } \quad|z|=1
$$

Using this fact in (18), we get for points z on $|z|=1$ with $g(z) \neq 0$,

$$
\begin{equation*}
1-n+2 \operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right)=\left|F^{\prime}(z)\right| . \tag{19}
\end{equation*}
$$

Applying lemma 2.5 to $F(z)$, we obtain for all points z on $|z|=1$ with $g(z) \neq 0$,

$$
1-n+2 \operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right) \geq \frac{2}{1+\left|F^{\prime}(0)\right|}
$$

that is, for $|z|=1$ with $g(z) \neq 0$,

$$
\operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right) \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) .
$$

This implies

$$
\left|\frac{z g^{\prime}(z)}{g(z)}\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \quad \text { for }|z|=1, g(z) \neq 0,
$$

and hence,

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)|g(z)| \quad \text { for }|z|=1 . \tag{20}
\end{equation*}
$$

Replacing $g(z)$ by $P(k z)$, we get for $|z|=1$,

$$
k\left|P^{\prime}(k z)\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)|P(k z)|,
$$

or equivalently,

$$
\begin{equation*}
2 k \max _{|z|=k}\left|P^{\prime}(z)\right| \geq\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=k}|P(z)| . \tag{21}
\end{equation*}
$$

Since $P^{\prime}(z)$ is a polynomial of degree $n-1$, by (10) of Lemma 2.3 with $R=k \geq 1$, we have

$$
k^{n-1} \max _{|z|=1}\left|P^{\prime}(z)\right|-\left(k^{n-1}-k^{n-3}\right)\left|a_{1}\right| \geq \max _{|z|=k}\left|P^{\prime}(z)\right|, \quad \text { if } \quad n>2 .
$$

Combining this inequality with (21), we get for $n>2$,

$$
\begin{equation*}
2 k^{n} \max _{|z|=1}\left|P^{\prime}(z)\right|-2\left(k^{n}-k^{n-2}\right)\left|a_{1}\right| \geq\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=k}|P(z)| . \tag{22}
\end{equation*}
$$

Since all the zeros of polynomial $g^{*}(z)=z^{n} \overline{g(1 / \bar{z})}=z^{n} \overline{P(k / \bar{z})}$ lie in $|z| \geq 1$, applying (12) of Lemma 2.4 with $R=k \geq 1$ and $\alpha=0$ to the polynomial $g^{*}(z)$, we get

$$
\begin{aligned}
& \max _{|z|=k}\left|g^{*}(z)\right| \leq \frac{k^{n}+1}{2} \max _{|z|=1}\left|g^{*}(z)\right|-\frac{\left|a_{n-1}\right|}{k}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right) \\
& \quad \text { if } \quad n>2 .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& k^{n} \max _{|z|=1}|P(z)| \leq \frac{k^{n}+1}{2} \max _{|z|=k}|P(z)|-\left|a_{n-1}\right| k^{n-1}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right) \\
& \quad \text { if } \quad n>2,
\end{aligned}
$$

or equivalently, we have for $n>2$,

$$
\max _{|z|=k}|P(z)| \geq \frac{2 k^{n}}{k^{n}+1} \max _{|z|=1}|P(z)|+\frac{2 k^{n-1}\left|a_{n-1}\right|}{k^{n}+1}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right) .
$$

Using above inequality in (22), we get for $n>2$,

$$
\begin{aligned}
2 k^{n} \max _{|z|=1}\left|P^{\prime}(z)\right| & -2\left(k^{n}-k^{n-2}\right)\left|a_{1}\right| \geq \frac{2 k^{n}}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)| \\
& +\frac{2 k^{n-1}\left|a_{n-1}\right|}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right),
\end{aligned}
$$

consequently,

$$
\begin{aligned}
& \max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right) \max _{|z|=1}|P(z)|+\left(1-1 / k^{2}\right)\left|a_{1}\right| \\
&+\frac{\left|a_{n-1}\right|}{k\left(1+k^{n}\right)}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right), \\
& \text { if } \quad n>2
\end{aligned}
$$

which proves inequality (6) for the case $n>1$. For the case $n=2$, the result follows on similar lines in view of part second of Lemma 2.3 and Lemma 2.4 with $\alpha=0$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.3. By hypothesis $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k, k \geq 1$. If $P(z)$ has a zero on $|z|=k$, then $m=0$ and the result follows by Theorem 1.1. Henceforth, we assume that all the zeros of $P(z)$ lie in $|z|<k$, so that $m>0$. Hence all the zeros of $h(z)=P(k z)$ lie in disk $|z|<1$ and $m=\min _{|z|=k}|P(z)|=\min _{|z|=1}|h(z)|$. Therefore,
we have $m \leq|h(z)|$ for $|z|=1$. This implies for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$ that

$$
m\left|\lambda z^{n}\right|<|h(z)| \quad \text { for } \quad|z|=1
$$

Applying Rouche's theorem, it follows that all the zeros of the polynomial $H(z)=h(z)+\lambda m z^{n}$ lie in $|z|<1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$. Now proceeding similarly as in the proof of Theorem 1.1 (with $g(z)$ replacing by $H(z)$), we obtain from (20)

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \geq \frac{1}{2}\left(n+\frac{\left|k^{n} a_{n}+\lambda m\right|-\left|a_{0}\right|}{\left|k^{n} a_{n}+\lambda m\right|+\left|a_{0}\right|}\right)|H(z)| \quad \text { for }|z|=1 \tag{23}
\end{equation*}
$$

Using the fact that the function $t(x)=\frac{x-|a|}{x+|a|}$ is non-decreasing function of x and $\left|k^{n} a_{n}+\lambda m\right| \geq k^{n}\left|a_{n}\right|-|\lambda m|$, we get for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$ and $|z|=1$,

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)|H(z)| . \tag{24}
\end{equation*}
$$

Equivalently for $|z|=1$ and $|\lambda|<1$,

$$
\begin{equation*}
\left|h^{\prime}(z)+n m \lambda z^{n-1}\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)(|h(z)|-m|\lambda|) . \tag{25}
\end{equation*}
$$

Since all the zeros of $H(z)=h(z)+\lambda m z^{n}$ lie in $|z|<1$, by Guass Lucas theorem it follows that all the zeros of $H^{\prime}(z)=h^{\prime}(z)+\lambda n m z^{n-1}$ lie in $|z|<1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$. This implies

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \geq n m|z|^{n} \quad \text { for }|z| \geq 1 \tag{26}
\end{equation*}
$$

Choosing argument of λ in the left hand side of (25) such that

$$
\left|h^{\prime}(z)+n m \lambda z^{n-1}\right|=\left|h^{\prime}(z)\right|-n m|\lambda| \quad \text { for }|z|=1,
$$

which is possible by (26), we get

$$
\left|h^{\prime}(z)\right|-n m|\lambda| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)(|h(z)|-m|\lambda|),
$$

that is,

$$
\left|h^{\prime}(z)\right| \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)|h(z)|+\frac{1}{2}\left(n-\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)|\lambda| m .
$$

Replacing $h(z)$ by $P(k z)$, we get

$$
\begin{align*}
k \max _{|z|=k}\left|P^{\prime}(z)\right| \geq & \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right) \max _{|z|=k}|P(z)| \\
& +\frac{1}{2}\left(n-\frac{k^{n}\left|a_{n}\right|-|\lambda m|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-|\lambda m|+\left|a_{0}\right|}\right)|\lambda| m . \tag{27}
\end{align*}
$$

Again as before, using (10) of Lemma 2.3 and (12) of lemma 2.4, we obtain for $0 \leq l<1$ and $n>2$,

$$
\begin{aligned}
& k^{n} \max _{|z|=1}\left|P^{\prime}(z)\right|-\left(k^{n}-k^{n-2}\right)\left|a_{1}\right| \\
& \geq \frac{1}{2}\left(n+\frac{k^{n}\left|a_{n}\right|-l m-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-l m+\left|a_{0}\right|}\right)\left\{\frac{2 k^{n}}{1+k^{n}} \max _{|z|=1}|P(z)|+l\left(\frac{k^{n}-1}{k^{n}+1}\right) \min _{|z|=k}|P(z)|\right. \\
& \left.+\frac{2 k^{n-1}\left|a_{n-1}\right|}{k^{n}+1}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right)\right\}+\frac{1}{2}\left(n-\frac{k^{n}\left|a_{n}\right|-l m-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-l m+\left|a_{0}\right|}\right) l m,
\end{aligned}
$$

which on simplification yields for $0 \leq l<1$ and $n>2$,

$$
\begin{aligned}
& \max _{|z|=1}\left|P^{\prime}(z)\right| \\
& \geq \frac{n}{1+k^{n}}\left(\max _{|z|=1}|P(z)|+l m\right)+\frac{n\left|a_{n-1}\right|}{k\left(1+k^{n}\right)}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right) \\
& +\left(1-1 / k^{2}\right)\left|a_{1}\right|+\left(\frac{k^{n}\left|a_{n}\right|-l m-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|-l m+\left|a_{0}\right|}\right)\left\{\frac{1}{k^{n}\left(1+k^{n}\right)}\left(k^{n} \max _{|z|=1}|P(z)|-l m\right)\right. \\
& \left.+\frac{\left|a_{n-1}\right|}{k\left(1+k^{n}\right)}\left(\frac{k^{n}-1}{n}-\frac{k^{n-2}-1}{n-2}\right)\right\} .
\end{aligned}
$$

The above inequality is equivalent to the inequality (7) for $n>2$. For $n=2$, the result follows on the similar lines by using inequality (11) of Lemma 2.3 and inequality (13) of Lemma 2.4 in the inequality (27). This proves Theorem 1.3.

4. Concluding Remark

If we use Lemma 2.3 and Lemma 2.4 with $|\alpha|=1$ in the proof of Theorem 1.1, we get the following refinement of inequalities (2) and (6).

Theorem 4.1. If $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then

$$
\begin{array}{r}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{1}{1+k^{n}}\left(n+\frac{k^{n}\left|a_{n}\right|-\left|a_{0}\right|}{k^{n}\left|a_{n}\right|+\left|a_{0}\right|}\right)\left(\max _{|z|=1}|P(z)|+\frac{k^{n}-1}{2 k^{n}} \min _{|z|=k}|P(z)|\right. \tag{28}\\
\left.+\frac{\left|a_{n-1}\right|}{k} \phi(k)\right)+\left|a_{1}\right| \psi(k)
\end{array}
$$

where $\psi(k)=\left(1-1 / k^{2}\right)$ or $(1-1 / k)$ according as $n>2$ or $n=2$. The result is sharp and equality in (28) holds for $P(z)=z^{n}+k^{n}$.

References

[1] Abdul Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc. 89 (2) (1983), 259-266.
[2] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivatives, J. Approx. Theory 54 (1998), 306-313.
[3] A. Aziz and N. A. Rather, Some Zygmund type L^{q} inequalities for polynomials, J. Math. Anal. Appl. 289 (2004), 14-29.
[4] A. Aziz and N. A. Rather, Inequalities for the polar derivative of a polynomial with restricted zeros, Math. Bulk. 17 (2003), 15-28.
[5] A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turán concerning polynomials, Math. Ineq. Appl. 1 (1998), 231-238.
[6] C. Frappier, Q. I. Rahman and Rt. St. Ruscheweyh, New inequalities for polynomials, Trans, Amer. Math. Soc. 288 (1985),69-99.
[7] V. N. Dubinin, Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros, J. Math. Sci. 143 (2007), 3069-3076.
[8] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc. 41 (1973), 543-546.
[9] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a poplynomial, Bull. Amer. Math. Soc.,50(1944), 509-513.
[10] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, (1994).
[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128, 12 (2000), 3513-3517.
[12] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[13] N. A. Rather and Ishfaq Dar, Some applications of the Boundary Schwarz lemma for Polynomials with restricted zeros, Applied Mathematics E-Notes 20 (2020), 422-431.
[14] N. A. Rather, Ishfaq Dar and A. Iqbal, Some extensions of a theorem of Paul Turán concerning polynomials, Kragujevac Journal of Mathematics, 46 (6), 969979.
[15] N. A. Rather, Ishfaq Dar and A. Iqbal, On a refinement of Turán's inequality, Complex Anal Synerg. 6 (21) (2020). https://doi.org/10.1007/s40627-020-000585.
[16] N. A. Rather and Suhail Gulzar, Generalization of an inequality involving maximum moduli of a polynomial and its polar derivative, Non linear Funct. Anal. and Appl. 19 (2014), 213-221.
[17] P. Turán, Über die Ableitung von Polynomen, Compos. Math. 7 (1939), 89-95.

N. A. Rather
Department of Mathematics, University of Kashmir, Srinagar-190006, India
E-mail: drnisar@uok.edu.in

Ishfaq Dar

Department of Mathematics, University of Kashmir, Srinagar-190006, India
E-mail: ishfaq619@gmail.com

A. Iqbal

Department of Mathematics, University of Kashmir, Srinagar-190006, India
E-mail: Itz.a.iqbal@gmail.com

