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SOLUTION AND STABILITY OF AN n-VARIABLE

ADDITIVE FUNCTIONAL EQUATION

Vediyappan Govindan, Jung Rye Lee∗, Sandra Pinelas,
Abdul Rahim Noorsaba, and Ganapathy Balasubramanian

Abstract. In this paper, we investigate the general solution and
the Hyers-Ulam stability of n-variable additive functional equation
of the form

=

(
n∑

i=1

(−1)i+1xi

)
=

n∑
i=1

(−1)i+1=(xi),

where n is a positive integer with n ≥ 2, in Banach spaces by using
the direct method.

1. Introduction

The stability problem of functional equations originated from a ques-
tion of Ulam [16] concerning the stability of group homeomorphisms.
Hyers [7] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ theorem was generalized by Aoki [2] for ad-
ditive mappings and by Rassias [13] for linear mappings by considering
an unbounded Cauchy difference(see [1,4,6,10,12,14,15]). A generaliza-
tion of the Rassias theorem was obtained by Gavruta by replacing the
unbounded Cauchy difference by a general control function in the spirit
of Rassias’ approach (see [3, 5, 7–9,11]).
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The Cauchy additive functional equation is of the form

=(x+ y) = =(x) + =(y). (1.1)

In this section, we introduce and investigate the general solution and
the Hyers-Ulam stability of the additive functional equation of the form

=

(
n∑
i=1

(−1)i+1xi

)
=

n∑
i=1

(−1)i+1=(xi), (1.2)

where n is a positive integer with n ≥ 2, in Banach spaces by using the
direct method. Here after, throughout this paper, let us consider X and
Y to be a normed space and a Banach space, respectively. Assume that
n is a positive integer with n ≥ 2. For convience,

D=(x1, x2, · · · , xn) := =

(
n∑
i=1

(−1)i+1xi

)
−

n∑
i=1

(−1)i+1=(xi)

for all x1, x2, · · · , xn.

2. Solution of the additive functional equation (1.2)

In this section, we investigate a general solution of the additive func-
tional equation (1.2).

Lemma 2.1. If a mapping = : X → Y satisfies the functional equation
(1.1) if and only if = : X → Y satisfies the functional equation (1.2)
under the assumption that if n is odd then =(0) = 0.

Proof. Setting (x, y) = (0, 0) in (1.1), we get =(0) = 0. Replacing
(x, y) by (x,−x) in (1.1), we have =(−x) = −=(x) for all x ∈ X. So

=(x− y) = =(x) + =(−y) = =(x)−=(y) (2.3)

for all x, y ∈ X. It follows from (1.1) and (2.3) that (1.2) holds for n ≥ 2.
Assume that n is even. Letting x1 = x2 = · · · = xn = 0 in (1.2), we

get =(0) = 0. Letting x1 = x3 = x4 = · · · = xn = 0 in (1.2), we get
=(−x2) = −=(x2) for all x2 ∈ X. Letting x3 = x4 = · · · = xn = 0 in
(1.2), we get

=(x1 − x2) = =(x1)−=(x2) = =(x1) + =(−x2) (2.4)

for all x1, x2 ∈ X. Replacing (x1, x2) by (x,−y) in (2.4), we get

=(x+ y) = =(x) + =(y)
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for all x, y ∈ X.
Assume that n is odd. Letting x1 = x3 = x4 = · · · = xn = 0 in (1.2),

we get =(−x2) = −=(x2) for all x2 ∈ X. So

=(x1 − x2) = =(x1)−=(x2) = =(x1) + =(−x2) (2.5)

for all x1, x2 ∈ X. Replacing (x1, x2) by (x,−y) in (2.5), we get

=(x+ y) = =(x) + =(y)

for all x, y ∈ X.

3. Stability results for even positive integers in (1.2)

In this section, we present the Hyers-Ulam stability of the functional
equation (1.2) for even positive integers n. Assume that n is even.

Theorem 3.1. Let θ : Xn → [0,∞) be a function such that

Φ(x1, · · · , xn) :=
∞∑
k=0

θ
(
nkx1, n

kx2, · · · , nkxn
)

nk
<∞ (3.6)

for all x1, x2, · · · , xn ∈ X. Let = : X → Y be a mapping satisfying the
inequality∥∥∥∥∥=

(
n∑
i=1

(−1)i+1xi

)
−

n∑
i=1

(−1)i+1=(xi)

∥∥∥∥∥ ≤ θ(x1, x2, . . . , xn) (3.7)

for all x1, x2, . . . , xn ∈ X. There exists a unique additive mapping A :
X → Y which satisfies

‖=(x)− A(x)‖ ≤ 1

n
Φ(x,−x, x,−x, · · · , · · · , x,−x) (3.8)

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
k→∞

=
(
nkx
)

nk

for all x ∈ X.

Proof. Letting (x1, x2, . . . , xn−1, xn) = (x,−x, x,−x, · · · , x,−x) in (3.7),
we have

‖=(nx)− n=(x)‖ ≤ θ(x,−x, x,−x, . . . , x,−x) (3.9)
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for all x ∈ X. It follows from (3.9) that∥∥∥∥=(nx)

n
−=(x)

∥∥∥∥ ≤ 1

n
θ(x,−x, x,−x, · · · , x,−x) (3.10)

for all x ∈ X. Replacing x by nl−1x in (3.10) and dividing by nl−1, we
obtain ∥∥∥∥=(nlx)

nl
− =(nl−1x)

nl−1

∥∥∥∥ (3.11)

≤ 1

nl
θ(nl−1x,−nl−1x, nl−1x,−nl−1x, · · · , nl−1x,−nl−1x)

for all x ∈ X. It follows from (3.11) and the triangle inequality that∥∥∥∥=(nkx)

nk
−=(x)

∥∥∥∥ ≤ 1

n

k−1∑
l=0

1

nl
θ
(
nlx,−nlx, nlx,−nlx, · · · , nlx,−nlx

)
(3.12)

for all x ∈ X.
Replacing x by nmx and dividing nm in (3.12), we obtain that∥∥∥∥=(nk+mx)

nk+m
− =(nmx)

nm

∥∥∥∥
≤ 1

n

k−1∑
l=0

1

nl+m
θ
(
nl+mx,−nl+mx, nl+mx,−nl+mx, · · · , nl+mx,−nl+mx

)
for all x ∈ X. Hence the sequence

{
=(nmx)
nm

}
is a Cauchy sequence.

Since Y is complete, there exists a mapping A : X → Y defined by

A(x) = limm→∞
=(nmx)
nm for all x ∈ X. Letting k → ∞ in (3.12), we get

that (3.8) holds for x ∈ X.
To prove that A satisfies (1.2), replacing (x1, x2, . . . , xn) by

(x, x, 0, . . . , 0)︸ ︷︷ ︸
n−2−times n−2−times

and dividing (n− 2)n in (3.7), we obtain

1

nk
∥∥D= (nkx1, nkx2, · · · , nkxn)∥∥ ≤ 1

nk
θ
(
nkx1, n

kx2, · · · , nkxn
)

for all x1, x2, · · · , xn ∈ X. Letting k → ∞ in the above inequality and
using the definition of A(x), we obtain that DA(x1, x2, · · · , xn) = 0. By
Lemma 2.1, A is additive.
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To show that A is unique, let B(x) be another additive mapping
satisfying (1.2) and (3.8). Then

‖A(x)−B(x)‖ =
1

nk
∥∥A(nkx)−B(nkx)

∥∥
=

1

nk
∥∥A(nkx)−=(nkx) + =(nkx)−B(nkx)

∥∥
≤ 1

nk
∥∥A(nkx)−=(nkx)

∥∥+
1

nk
∥∥=(nkx)−B(nkx)

∥∥
≤ 2

nk+1
Φ(nkx,−nkx, nkx,−nkx, · · · , nkx,−nkx)

→ 0 as n→∞

for all x ∈ X. Hence A is unique.

Theorem 3.2. Let θ : Xn → [0,∞) be a function such that

Ψ(x1, · · · , xn) :=
∞∑
k=1

nkθ
(x1
nk
,
x2
nk
, · · · , xn

nk

)
<∞

for all x1, x2, · · · , xn ∈ X. Let = : X → Y be a mapping satisfying (3.7).
There exists a unique additive mapping A : X → Y which satisfies

‖=(x)− A(x)‖ ≤ 1

n
Ψ(x,−x, x,−x, · · · , · · · , x,−x)

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
k→∞

nk=
( x
nk

)
for all x ∈ X.

Proof. It follows from (3.9) that∥∥∥=(x)− n=
(x
n

)∥∥∥ ≤ θ
(x
n
,−x

n
, · · · , x

n
,−x

n

)
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.1.

The following corollary is an immediate consequence of Theorems 3.1
and 3.2.
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Corollary 3.3. Let λ and γ be positive real numbers with γ 6= 1.
Let = : X → Y be a mapping satisfying the inequality

‖D=(x1, x2, · · · , xn)‖ ≤ λ

n∑
i=1

‖xi‖γ (3.13)

for all x1, x2, · · · , xn ∈ X. Then there exists a unique additive mapping
A : X → Y such that

‖=(x)− A(x)‖ ≤ nλ‖x‖γ

|n− nγ|
for all x ∈ X.

4. Stability results for odd positive integers in (1.2)

In this section, we obtain the Hyers-Hyers stability of the functional
equation (1.2) for odd positive integers. Assume that n is odd.

Theorem 4.1. Let θ : Xn → [0,∞) be a function such that

Φ(x1, · · · , xn) :=
∞∑
k=0

θ
(
(n− 1)kx1, (n− 1)kx2, · · · , (n− 1)kxn

)
(n− 1)k

<∞

for all x1, x2, · · · , xn ∈ X. Let = : Xn → Y be an odd mapping satisfying
(3.7). There exists a unique additive mapping A : X → Y which satisfies

‖=(x)− A(x)‖ ≤ 1

n− 1
Φ(x,−x, x,−x, · · · , x,−x, 0) (4.14)

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
k→∞

(
(n− 1)kx

)
(n− 1)k

for all x ∈ X.

Proof. Since = is odd, =(0) = 0.
Letting (x1, x2, . . . , xn−1, xn) = (x,−x, x,−x, · · · , x,−x, 0) in (3.7),

we have

‖=((n− 1)x)− (n− 1)=(x)‖ ≤ θ(x,−x, x,−x, . . . , x,−x, 0) (4.15)

for all x ∈ X. It follows from (4.15) that∥∥∥∥=((n− 1)x)

n− 1
−=(x)

∥∥∥∥ ≤ 1

n− 1
θ(x,−x, x,−x, · · · , x,−x, 0) (4.16)
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for all x ∈ X. Replacing x by (n − 1)l−1x in (4.16) and dividing by
(n− 1)l−1, we obtain∥∥∥∥=((n− 1)lx)

(n− 1)l
− =((n− 1)l−1x)

(n− 1)l−1

∥∥∥∥ (4.17)

≤ 1

(n− 1)l
θ((n− 1)l−1x,−(n− 1)l−1x, · · · , (n− 1)l−1x,−(n− 1)l−1x, 0)

for all x ∈ X. It follows from (4.17) and the triangle inequality that∥∥∥∥=((n− 1)kx)

(n− 1)k
−=(x)

∥∥∥∥ (4.18)

≤ 1

n− 1

k−1∑
l=0

1

(n− 1)l
θ
(
(n− 1)lx,−(n− 1)lx, · · · , (n− 1)lx,−(n− 1)lx, 0

)
for all x ∈ X.

Replacing x by (n− 1)mx and dividing (n− 1)m in (4.18), we obtain
that∥∥∥∥=((n− 1)k+mx)

(n− 1)k+m
− =((n− 1)mx)

(n− 1)m

∥∥∥∥
≤ 1

n− 1

k−1∑
l=0

1

(n− 1)l+m
θ

×
(
(n− 1)l+mx,−(n− 1)l+mx, · · · , (n− 1)l+mx,−(n− 1)l+mx, 0

)
for all x ∈ X. Hence the sequence

{
=((n−1)mx)

(n−1)m

}
is a Cauchy sequence.

Since Y is complete, there exists a mapping A : X → Y defined by

A(x) = limm→∞
=((n−1)mx)

(n−1)m for all x ∈ X. Letting k → ∞ in (4.18), we

get that (4.14) holds for x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 4.2. Let θ : Xn → [0,∞) be a function such that

Ψ(x1, · · · , xn) :=
∞∑
k=1

(n− 1)kθ

(
x1
nk
,

x2
(n− 1)k

, · · · , xn
(n− 1)k

)
<∞

for all x1, x2, · · · , xn ∈ X. Let = : X → Y be an odd mapping satisfying
(3.7). There exists a unique additive mapping A : X → Y which satisfies

‖=(x)− A(x)‖ ≤ 1

n− 1
Ψ(x,−x, x,−x, · · · , · · · , x,−x, 0)



620 V. Govindan, J.R. Lee, S. Pinelas, A.R. Noorsaba, and G. Balasubramanian

for all x ∈ X. The mapping A(x) is defined by

A(x) = lim
k→∞

(n− 1)k=
(

x

(n− 1)k

)
for all x ∈ X.

Proof. It follows from (4.15) that∥∥∥∥=(x)− (n− 1)=
(

x

n− 1

)∥∥∥∥ ≤ θ

(
x

n− 1
,− x

n− 1
, · · · , x

n− 1
,− x

n− 1
, 0

)
for all x ∈ X.

The rest of the proof is similar to the proofs of Theorems 3.1 and
4.1.

The following corollary is an immediate consequence of Theorems 4.1
and 4.2.

Corollary 4.3. Let λ and γ be positive real numbers with γ 6= 1.
Let = : X → Y be an odd mapping satisfying (3.13) Then there exists
a unique additive mapping A : X → Y such that

‖=(x)− A(x)‖ ≤ (n− 1)λ‖x‖γ

|(n− 1)− (n− 1)γ|
for all x ∈ X.
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