CIS CODES OVER \mathbb{F}_{4}

Hyun Jin Kim

Abstract

We study the complementary information set codes (for short, CIS codes) over \mathbb{F}_{4}. They are strongly connected to correlationimmune functions over \mathbb{F}_{4}. Also the class of CIS codes includes the self-dual codes. We find a construction method of CIS codes over \mathbb{F}_{4} and a criterion for checking equivalence of CIS codes over \mathbb{F}_{4}. We complete the classification of all inequivalent CIS codes of length up to 8 over \mathbb{F}_{4}.

1. Introduction

A complementary information set code (for short, CIS code) is defined to be a linear code with $[2 n, n, d]$ which has two disjoint information sets for a positive integer n. A CIS code over \mathbb{F}_{2} is proposed by Carlet et al. [6]. CIS codes are strongly connected to correlation-immune functions. Correlation-immune functions are noticeably important class of cryptography functions due to their useful application in cryptography $[15,16]$. A CIS code over \mathbb{F}_{p} is introduced by Kim and Lee [11]. They classify CIS codes over \mathbb{F}_{p} of small lengths, where p is $3,5,7$ in [11]. Also, they show that long CIS codes over \mathbb{F}_{p} meet the Gilbert-Vashmov bound. The class of CIS codes includes self-dual codes. Furthermore, a notion of higher order CIS codes over \mathbb{F}_{2} is developed by Carlet et al. [5].

[^0]Also, a t-CIS code over \mathbb{F}_{p} is developed by Kim and Lee, where the t-CIS code is a CIS code of order $t \geq 2$ [12]. They show that orthogonal arrays over \mathbb{F}_{p} can be explicitly constructed from t-CIS codes over \mathbb{F}_{p}.

In this paper we study on CIS codes over \mathbb{F}_{4}. We show the relation between the existence of a correlation immune function of strength d of n-variables and the existence of a CIS code over \mathbb{F}_{4} of parameters $[2 n, n,>d]$ with the systematic partition. We find a method for constructing complementary information set codes over \mathbb{F}_{4} from the building-up method [$8,13,14]$. Using this method, we classify quaternary CIS codes of lengths up to 8 . Also, we show a criterion for checking equivalence of CIS codes over \mathbb{F}_{4}.

This paper is organized as follows. We introduce some definitions and basic contents in Section 2. In Section 3, we show the relation between correlation-immune functions over \mathbb{F}_{4} and quaternary CIS code. In Section 4, we find a construction method of CIS codes over \mathbb{F}_{4} and a criterion for checking equivalence of CIS codes over \mathbb{F}_{4}. Finally, we classify quaternary CIS codes of lengths $2,4,6,8$ in Section 5 .

In this paper, all computations are done using the computer algebra system MAGMA [1].

2. Preliminaries

Let \mathbb{F}_{4} be a finite field of cardinality 4 with $\mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$. Let \mathcal{C} be a linear code of length n over \mathbb{F}_{4}. We define two inner products over \mathbb{F}_{4}^{n}. For $\mathbf{u}, \mathbf{v} \in \mathbb{F}_{4}^{n}, \mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, the Euclidean inner product is defined as

$$
\mathbf{u} \cdot \mathbf{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

and the Hermitian inner product is defined as

$$
<\mathbf{u}, \mathbf{v}>=\sum_{i=1}^{n} u_{i} v_{i}^{2} .
$$

Let

$$
\mathcal{C}^{\perp E}=\left\{\mathbf{x} \in \mathbb{F}_{4}^{n} \mid \mathbf{x} \cdot \mathbf{c}=0, \forall \mathbf{c} \in \mathcal{C}\right\}
$$

be the Euclidean dual code of \mathcal{C}, and let

$$
\mathcal{C}^{\perp H}=\left\{\mathbf{x} \in \mathbb{F}_{4}^{n} \mid<\mathbf{x}, \mathbf{c}>=0, \forall \mathbf{c} \in \mathcal{C}\right\}
$$

be the Hermitian dual code of \mathcal{C}. A code \mathcal{C} is Euclidean self-dual if $\mathcal{C}=\mathcal{C}^{\perp E}$ and Hermitian self-dual if $\mathcal{C}=\mathcal{C}^{\perp H}$. A code \mathcal{C} of length n is called systematic if there exists a subset I of $\{1,2, \ldots, n\}$ (called an information set of \mathcal{C}) such that every possible tuple of length $|I|$ occurs in exactly one codeword in \mathcal{C} within the specified coordinates x_{i} for $i \in I[6,11]$. Thus, a CIS code is a systematic code with two complementary information sets. The generator matrix of a $[2 n, n]$ code is called systematic form if it is blocked as $[I \mid A]$, where I is the identity matrix of order n and A is an $n \times n$ matrix [11]. The class of CIS codes over \mathbb{F}_{4} includes the Euclidean self-dual codes and the Hermitian self-dual codes over \mathbb{F}_{4} as its subclasses.

The Hamming weight of a vector \mathbf{z} is the number of its nonzero entries. The Hamming weight of \mathbf{z} is denoted by $w t(\mathbf{z})$. The homogeneous polynomial $W_{\mathcal{C}}(X, Y)$ defined by

$$
W_{\mathcal{C}}(X, Y)=\sum_{c \in \mathcal{C}} X^{n-w t(c)} Y^{w t(c)} .
$$

is called the weight enumerator of a $\operatorname{code} \mathcal{C}$. Let \mathcal{C} and \mathcal{C}^{\prime} be two codes over \mathbb{F}_{4}. If there is some monomial matrix M (resp. permutation matrix) over \mathbb{F}_{4} such that $\mathcal{C}^{\prime}=\mathcal{C} M$, where $\mathcal{C} M=\{c M \mid c \in \mathcal{C}\}$, then two $\operatorname{codes} \mathcal{C}$ and \mathcal{C}^{\prime} over \mathbb{F}_{4} are monomially equivalent (resp. permutation equivalent), denoted by $\mathcal{C} \cong \mathcal{C}^{\prime}$. The monomial automorphism group of \mathcal{C} is the set of monomial matrices M with $\mathcal{C}=\mathcal{C} M$, denoted by $\operatorname{Aut}(\mathcal{C})$. In this paper, the equivalence means the monomial equivalence. We note that this is the usual concept of equivalence over \mathbb{F}_{4}, named IsEquivalent in MAGMA [1].

The following three lemmas are given in [6], and they also hold for CIS codes over \mathbb{F}_{4} as well.

Lemma 2.1. If a $[2 n, n]$ code \mathcal{C} over \mathbb{F}_{4} has generator matrix $[I \mid A]$ with A invertible, then \mathcal{C} is a CIS code with the systematic partition. Conversely, every CIS code is equivalent to a code with generator matrix in that form.

In particular, this lemma applies to systematic self-dual codes whose generator matrix $[I \mid A]$ satisfies $A A^{T}=I$.

Lemma 2.2. If a $[2 n, n]$ code \mathcal{C} over \mathbb{F}_{4} has generator matrix $[I \mid A]$ with $\operatorname{rank}(A)<n / 2$, then \mathcal{C} is not a CIS code.

Lemma 2.3. If \mathcal{C} is a $[2 n, n]$ code over \mathbb{F}_{4} whose dual has minimum weight 1 then \mathcal{C} is not a CIS code.

3. Correlation-immune functions

We consider correlation-immune functions of strength d over \mathbb{F}_{4}^{n}. In $[2-4,7]$, we can find the characterization of the t-th order correlationimmune function $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{l}$. In this paper, we only think of the case of $l=n$ and $q=4$.

Definition 3.1. ($[3,7]$) A bijective function $F: \mathbb{F}_{4}^{n} \rightarrow \mathbb{F}_{4}^{n}$ is correlationimmune of strength d if for $\forall \mathbf{a}, \mathbf{b} \in \mathbb{F}_{4}^{n}$ such that $w t(\mathbf{a})+w t(\mathbf{b}) \leq$ d and $\mathbf{a} \neq 0$, we have $W_{F}(\mathbf{a}, \mathbf{b})=0$, where $w t$ denotes the Hamming weight and W_{F} the Walsh-Hadamard transform of $F: W_{F}(\mathbf{a}, \mathbf{b})=$ $\sum_{\mathbf{x} \in \mathbb{F}_{4}^{n}}(-1)^{\operatorname{tr}(\mathbf{a} \cdot \mathbf{x}+\mathbf{b} \cdot F(\mathbf{x}))}$.

We note that $\sum_{\mathbf{x} \in \mathbb{F}_{4}^{n}}(-1)^{\operatorname{tr}(\mathbf{x} \cdot \mathbf{a})} \neq 0$ if and only if $\mathbf{a}=0$. We can find the connection between correlation-immune functions of strength d and CIS codes over \mathbb{F}_{4} with parameters $[2 n, n,>d]$ from the following theorem.

Theorem 3.2. The existence of a linear correlation-immune function of strength d of n-variables over \mathbb{F}_{4} is equivalent to the existence of a CIS code over \mathbb{F}_{4} of parameters $[2 n, n,>d]$ with the systematic partition.

The proof is analogous to that of Theorem 3.2 in [11] and hence is omitted.

4. Construction of CIS Codes over \mathbb{F}_{4}

The following theorem is obtained from ([11, Theorem 4.1]). It gives a construction method of CIS code over \mathbb{F}_{4}. The motivation of this method is building up construction on self-dual codes over \mathbb{F}_{2} and $\mathbb{F}_{q}[8,13,14]$. We denote a generator matrix of a code \mathcal{C} by $\operatorname{gen}(\mathcal{C})$.

Theorem 4.1. Suppose that \mathcal{C} is a $[2 n, n]$ CIS code over \mathbb{F}_{4} with generator matrix ($I_{n} \mid A_{n}$), where A_{n} is an invertible matrix with n row vectors $\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathbf{n}}$. Then for any two vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and
$\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{F}_{4}^{n}, the following G^{\prime} generates a $[2(n+1), n+1]$
CIS code \mathcal{C}^{\prime} :

$$
G^{\prime}=\left[\begin{array}{c|ccc|ccc|c}
1 & x_{1} & \cdots & x_{n} & 0 & \cdots & 0 & 1 \\
\hline 0 & & & & & & & y_{1} \\
\vdots & & I_{n} & & & A_{n} & & \vdots \\
0 & & & & & & & y_{n}
\end{array}\right]
$$

Conversely, any $[2(n+1), n+1]$ CIS code over \mathbb{F}_{4} is obtained from some $[2 n, n]$ CIS code by this construction, up to equivalence.

Proof. It is obvious that the matrix G^{\prime} has two information sets. Hence the matrix G^{\prime} generates a $[2(n+1), n+1]$ CIS code over $G F(4)$.

Conversely, let $\overline{\mathcal{C}}$ be a $[2(n+1), n+1]$ CIS code over $G F(4)$. By Lemma 2.1, this code has a generator matrix $\left(I_{n+1} \mid A_{n+1}\right)$, where A_{n+1} is an $(n+1) \times(n+1)$ invertible matrix, up to equivalence. By elementary row operations, we have that

$$
\operatorname{gen}(\overline{\mathcal{C}}) \cong\left[\begin{array}{c|ccc|ccc|c}
1 & x_{1}^{\prime} & \cdots & x_{n}^{\prime} & 0 & \cdots & 0 & y^{\prime} \\
\hline 0 & & & & & & & y_{1}^{\prime} \\
\vdots & & I_{n} & & & A_{n}^{\prime} & & \vdots \\
0 & & & & & & y_{n}^{\prime}
\end{array}\right]
$$

where A_{n}^{\prime} is an $n \times n$ invertible matrix. In this case, y^{\prime} is a nonzero element in \mathbb{F}_{4} since A_{n+1} is an invertible matrix. By scaling the last column, we have

$$
\operatorname{gen}(\overline{\mathcal{C}}) \cong\left[\begin{array}{c|ccc|ccc|c}
1 & x_{1}^{\prime} & \cdots & x_{n}^{\prime} & 0 & \cdots & 0 & 1 \\
\hline 0 & & & & & & & \overline{y_{1}} \\
\vdots & & I_{n} & & & A_{n}^{\prime} & & \vdots \\
0 & & & & & & & \overline{y_{n}}
\end{array}\right]
$$

Since A_{n}^{\prime} is an $n \times n$ invertible matrix, $\left(I_{n} \mid A_{n}^{\prime}\right)$ generates a [2n, n] CIS code. Therefore, any $[2(n+1), n+1]$ CIS code can be obtained from some [$2 n, n$] CIS code by this construction up to equivalence.

We denote a transpose of a vector \mathbf{x} by \mathbf{x}^{T}.
Algorithm 1. construction of CIS code over \mathbb{F}_{4}

Input:
\mathcal{C} : a CIS code of length $2 n$ with generator matrix $\left[I_{n} \mid A_{n}\right]$
Output:
\mathcal{C}^{\prime} : a CIS code of length $2 n+2$ with generator matrix
begin
For $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{4}^{n}$,

$$
I^{\prime}:=\left[\frac{\mathbf{x}}{I_{n}}\right], A^{\prime}:=\left[A_{n} \mid \mathbf{y}^{T}\right]
$$

$$
\bar{I}:=\left[\mathbf{z}^{T} \mid I^{\prime}\right], \bar{A}:=\left[\frac{\mathbf{z}^{\prime}}{A^{\prime}}\right], \text { where } \mathbf{z}, \mathbf{z}^{\prime} \in \mathbb{F}_{4}^{n+1}
$$

with $\mathbf{z}=(1,0,0, \ldots, 0), \mathbf{z}^{\prime}=(0, \ldots, 0,0,1)$, $G^{\prime}=[\bar{I} \mid \bar{A}] ;$
$\mathcal{C}^{\prime}:=$ code generated by G^{\prime}

We consider equivalence relation of CIS codes generated by Algorithm 1. Let \mathcal{C} be a CIS $[2 n, n]$ code over \mathbb{F}_{4} with a generator matrix G. The elements of the automorphism group $\operatorname{Aut}(\mathcal{C})$ can be considered as monomial matrices. For any monimial matrix $M \in \operatorname{Aut}(\mathcal{C})$, the matrix $G M$ generates the code \mathcal{C}. Hence we can choose an invertible matrix L_{M} in $G L\left(n, \mathbb{F}_{4}\right)$ such that $G M=L_{M} G$, where $G L\left(n, \mathbb{F}_{4}\right)$ is the general linear group of demension n over \mathbb{F}_{4}. In this way, we obtain a homomorphism $\phi: \operatorname{Aut}(\mathcal{C}) \rightarrow G L\left(n, \mathbb{F}_{4}\right)$ with $\phi(M)=L_{M}$. We define the action of the image of ϕ on \mathbb{F}_{4}^{n} as $L(\mathbf{x})=L \mathbf{x}^{T}$ for every $\mathbf{x} \in \mathbb{F}_{4}^{n}$ and L in the image of $\phi[9,11]$.

Theorem 4.2. Let $\left[I_{n} \mid A_{n}\right]$ be a generator matrix of a CIS code \mathcal{C}, and let

$$
G_{1}=\left[\begin{array}{c|cccc|c}
1 & \mathbf{x} & 0 & \cdots & 0 & 1 \\
\hline 0 & & & & & \\
\vdots & I_{n} & & A_{n} & & \mathbf{y}^{T} \\
0 & & & & &
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{c|cccc|c}
1 & \mathrm{x}^{\prime} & 0 & \cdots & 0 & 1 \\
\hline 0 & & & & & \\
\vdots & I_{n} & & A_{n} & & \mathbf{y}^{T} \\
0 & & & &
\end{array}\right]
$$

Assume that there exists $M \in \operatorname{Aut}(\mathcal{C})$ such that its corresponding element $L_{M} \in \operatorname{Im}(\phi)$ with $G_{1} M=L_{M} G_{1}$ under a homomorphism ϕ : $\operatorname{Aut}(\mathcal{C}) \rightarrow G L\left(n, \mathbb{F}_{4}\right)$ is a stabilizer of \mathbf{y} and $\overline{\mathbf{x}^{\prime}}=\overline{\mathbf{x}} M$, where $\overline{\mathbf{x}}=$ $(\mathbf{x}, 0, \ldots, 0)$ and $\overline{\mathbf{x}^{\prime}}=\left(\mathrm{x}^{\prime}, 0, \ldots, 0\right)$. Then G_{1} and G_{2} generate equivalent CIS codes.

The proof is analogous to that of Theorem 4.4 in [11]. Hence it is omitted.

5. Implementation

Theorem 5.1. There is only one quaternary CIS code of length 2, up to equivalence..

Proof. A generator matrix of quaternary CIS code of length 2 is $[x, y]$, where $x, y \in \mathbb{F}_{4}$ are nonzero. The code generated by $[x, y]$ is equivalent to the code with a generator matrix $[1,1]$. Therefore, there exists one CIS code of length 2 over \mathbb{F}_{4}, up to equivalence.

We obtain the following theorem by Theorem 4.1.
Theorem 5.2. There are exactly three inequivalent quaternary CIS codes of length 4. One of these codes is Hermitian self-dual.

We list up the generator matrices of all inequivalent quaternary CIS codes of length 4 as follows:

$$
\mathcal{C}_{4,1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right], \quad \mathcal{C}_{4,2}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right], \quad \mathcal{C}_{4,3}=\left[\begin{array}{llll}
1 & w & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] .
$$

The code generated by $\mathcal{C}_{4,1}$ is Hermitian self-dual and Euclidean selfdual. The code generated by $\mathcal{C}_{4,3}$ is equivalent to a Euclidean self-dual code.

Remark 5.3. Hermitian self-dual codes are preserved under monomial equivalence. However, Euclidean self-dual codes are not preserved under monomial equivalence.

We write the weight enumerators of all inequivalent quaternary CIS code of length 4 as follows:

$$
\begin{aligned}
& W_{\mathcal{C}_{4,1}}=X^{4}+3 X^{2} Y^{2}+6 X Y^{3}+6 Y^{4} \\
& W_{\mathcal{C}_{4,2}}=X^{4}+12 X Y^{3}+3 Y^{4} \\
& W_{\mathcal{C}_{4,3}}=X^{4}+6 X^{2} Y^{2}+9 Y^{4}
\end{aligned}
$$

Theorem 5.4. There exist 16 CIS codes of length 6 over \mathbb{F}_{4}, up to equivalence. Two of these codes are Hermitian self-dual codes.

We present generator matrices of CIS codes of length 6 over \mathbb{F}_{4} as follows.

$$
\begin{array}{ll}
\mathcal{C}_{6,1} & =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right], \mathcal{C}_{6,2}=\left[\begin{array}{llllll}
1 & 0 & 0 & w^{2} & 1 & w \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right], \\
\mathcal{C}_{6,3} & =\left[\begin{array}{lllll}
1 & 0 & 0 & w^{2} & w
\end{array}\right), \\
0 & 1
\end{array} 0
$$

The codes generated by $\mathcal{C}_{6,11}$ and $\mathcal{C}_{6,16}$ are Hermitian self-dual. Also, the codes of generated by $\mathcal{C}_{6,6}$ and $\mathcal{C}_{6,13}$ are equivalent to Euclidean selfdual codes, and the code of generated by $\mathcal{C}_{6,16}$ is Euclidean self-dual. We list up the weight enumerators of all inequivalent CIS codes of length 6
over \mathbb{F}_{4} as follows:

$$
\begin{aligned}
& W_{\mathcal{C}_{6,1}}=X^{6}+12 X^{3} Y^{3}+9 X^{2} Y^{4}+36 X Y^{5}+6 Y^{6}, \\
& W_{\mathcal{C}_{6,2}}=X^{6}+6 X^{3} Y^{3}+27 X^{2} Y^{4}+18 X Y^{5}+12 Y^{6}, \\
& W_{\mathcal{C}_{6,3}}=X^{6}+9 X^{3} Y^{3}+18 X^{2} Y^{4}+27 X Y^{5}+9 Y^{6}, \\
& W_{\mathcal{C}_{6,4}}=X^{6}+3 X^{4} Y^{2}+9 X^{3} Y^{3}+12 X^{2} Y^{4}+27 X Y^{5}+12 Y^{6}, \\
& W_{\mathcal{C}_{6,5}}=X^{6}+15 X^{3} Y^{3}+12 X^{2} Y^{4}+21 X Y^{5}+15 Y^{6}, \\
& W_{\mathcal{C}_{6,6}}=X^{6}+6 X^{3} Y^{3}+27 X^{2} Y^{4}+18 X Y^{5}+12 Y^{6}, \\
& W_{\mathcal{C}_{6,7}}=X^{6}+12 X^{3} Y^{3}+21 X^{2} Y^{4}+12 X Y^{5}+18 Y^{6}, \\
& W_{\mathcal{C}_{6,8}}=X^{6}+3 X^{4} Y^{2}+6 X^{3} Y^{3}+21 X^{2} Y^{4}+18 X Y^{5}+15 Y^{6}, \\
& W_{\mathcal{C}_{6,9}}=X^{6}+3 X^{4} Y^{2}+27 X^{2} Y^{4}+24 X Y^{5}+9 Y^{6}, \\
& W_{\mathcal{C}_{6,10}}=X^{6}+3 X^{4} Y^{2}+12 X^{3} Y^{3}+15 X^{2} Y^{4}+12 X Y^{5}+21 Y^{6}, \\
& W_{\mathcal{C}_{6,11}}=X^{6}+45 X^{2} Y^{4}+18 Y^{6}, \\
& W_{\mathcal{C}_{6,12}}=X^{6}+3 X^{4} Y^{2}+3 X^{3} Y^{3}+18 X^{2} Y^{4}+33 X Y^{5}+6 Y^{6}, \\
& W_{\mathcal{C}_{6,13}}=X^{6}+3 X^{4} Y^{2}+12 X^{3} Y^{3}+3 X^{2} Y^{4}+36 X Y^{5}+9 Y^{6}, \\
& W_{\mathcal{C}_{6,14}}=X^{6}+6 X^{4} Y^{2}+21 X^{2} Y^{4}+24 X Y^{5}+12 Y^{6}, \\
& W_{\mathcal{C}_{6,15}}=X^{6}+6 X^{4} Y^{2}+6 X^{3} Y^{3}+15 X^{2} Y^{4}+18 X Y^{5}+18 Y^{6}, \\
& W_{\mathcal{C}_{6,16}}=X^{6}+9 X^{4} Y^{2}+27 X^{2} Y^{4}+27 Y^{6} .
\end{aligned}
$$

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput 24 (1997), 235-265.
[2] P. Camion, A. Canteaut. Correlation-immune and resilient functions over a finite alphabet and their applications in cryptography, Designs Codes Crypt. 16 (2) (1999), 121-149.
[3] P. Camion, C. Carlet, P. Charpin, N. Sendrier. On correlation-immune functions, Lecture Notes in Computer Science, 576 (1992), 86-100.
[4] C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings, Advances in Cryptology, EUROCRYPT'97, Lecture Note in Computer Sciences, Springer Verlag 1233 (1997), 422-433.
[5] C. Carlet, F. Freibert, S. Guilley, M. Kiermaier, J.-L. Kim, P. Solé, Higher-order CIS codes, IEEE Trans. Inform. Theory 60 (9) (2014), 5283-5295.
[6] C. Carlet, P. Gaborit, J-L. Kim, P. Solé, A new class of codes for Boolean masking of cryptographic computations, IEEE Trans. Inform. Theory 58 (2012), 6000-6011.
[7] K. Gopalakrishnan, D. R. Stinson Three characterizations of non-binary correlation-immune and resilient functions, Designs Codes Crypt. 5 (1995), 241251.
[8] M. Harada, The existence of a self-dual [70,35, 12] code and formally self-dual codes, Finte Fields Appl. 3 (1997), 131-139.
[9] M. Harada, A. Munemasa, Classification of self-dual codes of length 36, Adv. Math. Commun. 6 (2012), 229-235.
[10] H. J. Kim: https://drive.google.com/file/d/1sVZ-Em5hHFs36-hBLGda0NLqmt8 RThkh/view? usp=sharing.
[11] H. J. Kim and Y. Lee, Complementary information set codes over $G F(p)$, Designs Codes Crypt. 81 (2016), 541-555.
[12] H. J. Kim and Y. Lee, t-CIS codes over $G F(p)$ and orthogonal arrays, Discrete Applied Mathematics 217 (2017), 601-612.
[13] J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (2001), 386-393
[14] J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (1) (2004), 79-95.
[15] C.P. Schnorr, S. Vaudenay, Black box cryptanalysis of hash networks based on multipermutations, Advances in Cryptology, EUROCRYPT'94, Lecture Note in Computer Science 950, Springer Verlag (1995), 47-57.
[16] T. Siegenthaler, Correlation-immunity of non-linear Combining functions for cryptographic applications, IEEE Trans. Inform. Theory 30 (5) (1984), 776-780.

Hyun Jin Kim

University College
Yonsei University
Incheon 21983, Republic of Korea
E-mail: guswls41@yonsei.ac.kr

[^0]: Received April 20, 2020. Revised May 22, 2020. Accepted June 10, 2020.
 2010 Mathematics Subject Classification: 94B05, 11T71.
 Key words and phrases: complementary information set code, self-dual code, equivalence, correlation immune.

 This work was supported by the National Research Foundation of Korea(NRF) grant founded by the Korea government(NRF-2017R1D1A1B03028251).
 (c) The Kangwon-Kyungki Mathematical Society, 2020.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

