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CIS CODES OVER F4

Hyun Jin Kim

Abstract. We study the complementary information set codes (for
short, CIS codes) over F4. They are strongly connected to correlation-
immune functions over F4. Also the class of CIS codes includes the
self-dual codes. We find a construction method of CIS codes over F4

and a criterion for checking equivalence of CIS codes over F4. We
complete the classification of all inequivalent CIS codes of length up
to 8 over F4.

1. Introduction

A complementary information set code (for short, CIS code) is defined
to be a linear code with [2n, n, d] which has two disjoint information
sets for a positive integer n. A CIS code over F2 is proposed by Car-
let et al. [6]. CIS codes are strongly connected to correlation-immune
functions. Correlation-immune functions are noticeably important class
of cryptography functions due to their useful application in cryptog-
raphy [15, 16]. A CIS code over Fp is introduced by Kim and Lee [11].
They classify CIS codes over Fp of small lengths, where p is 3, 5, 7 in [11].
Also, they show that long CIS codes over Fp meet the Gilbert-Vashmov
bound. The class of CIS codes includes self-dual codes. Furthermore, a
notion of higher order CIS codes over F2 is developed by Carlet et al. [5].
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Also, a t-CIS code over Fp is developed by Kim and Lee, where the t-CIS
code is a CIS code of order t ≥ 2 [12]. They show that orthogonal arrays
over Fp can be explicitly constructed from t-CIS codes over Fp.

In this paper we study on CIS codes over F4. We show the rela-
tion between the existence of a correlation immune function of strength
d of n-variables and the existence of a CIS code over F4 of parame-
ters [2n, n,> d] with the systematic partition. We find a method for
constructing complementary information set codes over F4 from the
building-up method [8, 13, 14]. Using this method, we classify quater-
nary CIS codes of lengths up to 8. Also, we show a criterion for checking
equivalence of CIS codes over F4.

This paper is organized as follows. We introduce some definitions
and basic contents in Section 2. In Section 3, we show the relation
between correlation-immune functions over F4 and quaternary CIS code.
In Section 4, we find a construction method of CIS codes over F4 and
a criterion for checking equivalence of CIS codes over F4. Finally, we
classify quaternary CIS codes of lengths 2, 4, 6, 8 in Section 5.

In this paper, all computations are done using the computer algebra
system MAGMA [1].

2. Preliminaries

Let F4 be a finite field of cardinality 4 with F4 = {0, 1, ω, ω2}. Let
C be a linear code of length n over F4. We define two inner products
over Fn

4 . For u,v ∈ Fn
4 ,u = (u1, u2, . . . , un), and v = (v1, v2, . . . , vn), the

Euclidean inner product is defined as

u · v =
n∑

i=1

uivi,

and the Hermitian inner product is defined as

< u,v >=
n∑

i=1

uiv
2
i .

Let

C⊥E = {x ∈ Fn
4 | x · c = 0,∀c ∈ C}

be the Euclidean dual code of C, and let

C⊥H = {x ∈ Fn
4 |< x, c >= 0, ∀c ∈ C}
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be the Hermitian dual code of C. A code C is Euclidean self-dual if
C = C⊥E and Hermitian self-dual if C = C⊥H . A code C of length
n is called systematic if there exists a subset I of {1, 2, . . . , n} (called
an information set of C) such that every possible tuple of length | I |
occurs in exactly one codeword in C within the specified coordinates
xi for i ∈ I [6, 11]. Thus, a CIS code is a systematic code with two
complementary information sets. The generator matrix of a [2n, n] code
is called systematic form if it is blocked as [I | A], where I is the identity
matrix of order n and A is an n × n matrix [11]. The class of CIS
codes over F4 includes the Euclidean self-dual codes and the Hermitian
self-dual codes over F4 as its subclasses.

The Hamming weight of a vector z is the number of its nonzero en-
tries. The Hamming weight of z is denoted by wt(z). The homogeneous
polynomial WC(X, Y ) defined by

WC(X, Y ) =
∑
c∈C

Xn−wt(c)Y wt(c).

is called the weight enumerator of a code C. Let C and C ′ be two codes
over F4. If there is some monomial matrix M (resp. permutation matrix)
over F4 such that C ′ = CM , where CM = {cM | c ∈ C}, then two codes C
and C ′ over F4 are monomially equivalent (resp. permutation equivalent),
denoted by C ∼= C ′. The monomial automorphism group of C is the set
of monomial matrices M with C = CM , denoted by Aut(C). In this
paper, the equivalence means the monomial equivalence. We note that
this is the usual concept of equivalence over F4, named IsEquivalent in
MAGMA [1].

The following three lemmas are given in [6], and they also hold for
CIS codes over F4 as well.

Lemma 2.1. If a [2n, n] code C over F4 has generator matrix [I | A]
with A invertible, then C is a CIS code with the systematic partition.
Conversely, every CIS code is equivalent to a code with generator matrix
in that form.

In particular, this lemma applies to systematic self-dual codes whose
generator matrix [I | A] satisfies AAT = I.

Lemma 2.2. If a [2n, n] code C over F4 has generator matrix [I | A]
with rank(A) < n/2, then C is not a CIS code.
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Lemma 2.3. If C is a [2n, n] code over F4 whose dual has minimum
weight 1 then C is not a CIS code.

3. Correlation-immune functions

We consider correlation-immune functions of strength d over Fn
4 . In

[2–4, 7], we can find the characterization of the t-th order correlation-
immune function f : Fn

q → Fl
q. In this paper, we only think of the case

of l = n and q = 4.

Definition 3.1. ( [3,7]) A bijective function F : Fn
4 → Fn

4 is correlation-
immune of strength d if for ∀ a,b ∈ Fn

4 such that wt(a) + wt(b) ≤
d and a 6= 0, we have WF (a,b) = 0, where wt denotes the Ham-
ming weight and WF the Walsh-Hadamard transform of F : WF (a,b) =∑

x∈Fn
4
(−1)tr(a·x+b·F (x)).

We note that
∑

x∈Fn
4
(−1)tr(x·a) 6= 0 if and only if a = 0. We can

find the connection between correlation-immune functions of strength d
and CIS codes over F4 with parameters [2n, n,> d] from the following
theorem.

Theorem 3.2. The existence of a linear correlation-immune function
of strength d of n-variables over F4 is equivalent to the existence of a CIS
code over F4 of parameters [2n, n,> d] with the systematic partition.

The proof is analogous to that of Theorem 3.2 in [11] and hence is
omitted.

4. Construction of CIS Codes over F4

The following theorem is obtained from ( [11, Theorem 4.1]). It gives a
construction method of CIS code over F4. The motivation of this method
is building up construction on self-dual codes over F2 and Fq [8, 13, 14].
We denote a generator matrix of a code C by gen(C).

Theorem 4.1. Suppose that C is a [2n, n] CIS code over F4 with
generator matrix (In | An), where An is an invertible matrix with n row
vectors r1, r2, . . . , rn. Then for any two vectors x = (x1, x2, . . . , xn) and
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y = (y1, y2, . . . , yn) in Fn
4 , the following G′ generates a [2(n + 1), n + 1]

CIS code C ′ :

G′ =


1 x1 · · · xn 0 · · · 0 1
0 y1
... In An

...
0 yn


Conversely, any [2(n + 1), n + 1] CIS code over F4 is obtained from

some [2n, n] CIS code by this construction, up to equivalence.

Proof. It is obvious that the matrix G′ has two information sets.
Hence the matrix G′ generates a [2(n+ 1), n+ 1] CIS code over GF (4).

Conversely, let C be a [2(n + 1), n + 1] CIS code over GF (4). By
Lemma 2.1, this code has a generator matrix (In+1 | An+1), where An+1

is an (n+1)×(n+1) invertible matrix, up to equivalence. By elementary
row operations, we have that

gen(C) ∼=


1 x′1 · · · x′n 0 · · · 0 y′

0 y′1
... In A′n

...
0 y′n

 ,
where A′n is an n × n invertible matrix. In this case, y′ is a nonzero
element in F4 since An+1 is an invertible matrix. By scaling the last
column, we have

gen(C) ∼=


1 x′1 · · · x′n 0 · · · 0 1
0 y1
... In A′n

...
0 yn

 ,
Since A′n is an n× n invertible matrix, (In | A′n) generates a [2n, n] CIS
code. Therefore, any [2(n + 1), n + 1] CIS code can be obtained from
some [2n, n] CIS code by this construction up to equivalence.

We denote a transpose of a vector x by xT .
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Algorithm 1. construction of CIS code over F4

Input:
C : a CIS code of length 2n with generator matrix [In | An]

Output:
C′ : a CIS code of length 2n + 2 with generator matrix

begin
For x,y ∈ Fn

4 ,

I ′ :=

[
x
In

]
, A′ := [An | yT ],

I := [zT | I ′], A :=

[
z′

A′

]
, where z, z′ ∈ Fn+1

4

with z = (1, 0, 0, . . . , 0), z′ = (0, . . . , 0, 0, 1),
G′ = [I | A];

C′:= code generated by G′

We consider equivalence relation of CIS codes generated by Algorithm
1. Let C be a CIS [2n, n] code over F4 with a generator matrix G. The
elements of the automorphism group Aut(C) can be considered as mono-
mial matrices. For any monimial matrix M ∈ Aut(C), the matrix GM
generates the code C. Hence we can choose an invertible matrix LM in
GL(n,F4) such that GM = LMG, where GL(n,F4) is the general linear
group of demension n over F4. In this way, we obtain a homomorphism
φ : Aut(C) → GL(n,F4) with φ(M) = LM . We define the action of the
image of φ on Fn

4 as L(x) = LxT for every x ∈ Fn
4 and L in the image of

φ [9, 11].

Theorem 4.2. Let [In | An] be a generator matrix of a CIS code C,
and let

G1 =


1 x 0 · · · 0 1
0
... In An yT

0


and

G2 =


1 x′ 0 · · · 0 1
0
... In An yT

0





CIS codes over F4 291

Assume that there exists M ∈ Aut(C) such that its corresponding el-
ement LM ∈ Im(φ) with G1M = LMG1 under a homomorphism φ :
Aut(C) → GL(n,F4) is a stabilizer of y and x′ = xM , where x =
(x, 0, . . . , 0) and x′ = (x′, 0, . . . , 0). Then G1 and G2 generate equivalent
CIS codes.

The proof is analogous to that of Theorem 4.4 in [11]. Hence it is
omitted.

5. Implementation

Theorem 5.1. There is only one quaternary CIS code of length 2,
up to equivalence..

Proof. A generator matrix of quaternary CIS code of length 2 is [x, y],
where x, y ∈ F4 are nonzero. The code generated by [x, y] is equivalent
to the code with a generator matrix [1, 1]. Therefore, there exists one
CIS code of length 2 over F4, up to equivalence.

We obtain the following theorem by Theorem 4.1.

Theorem 5.2. There are exactly three inequivalent quaternary CIS
codes of length 4. One of these codes is Hermitian self-dual.

We list up the generator matrices of all inequivalent quaternary CIS
codes of length 4 as follows:

C4,1 =

[
1 0 0 1
0 1 1 0

]
, C4,2 =

[
1 0 0 1
0 1 1 1

]
, C4,3 =

[
1 w 0 1
0 1 1 1

]
.

The code generated by C4,1 is Hermitian self-dual and Euclidean self-
dual. The code generated by C4,3 is equivalent to a Euclidean self-dual
code.

Remark 5.3. Hermitian self-dual codes are preserved under mono-
mial equivalence. However, Euclidean self-dual codes are not preserved
under monomial equivalence.

We write the weight enumerators of all inequivalent quaternary CIS
code of length 4 as follows:

WC4,1 = X4 + 3X2Y 2 + 6XY 3 + 6Y 4,
WC4,2 = X4 + 12XY 3 + 3Y 4,
WC4,3 = X4 + 6X2Y 2 + 9Y 4.
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Theorem 5.4. There exist 16 CIS codes of length 6 over F4, up to
equivalence. Two of these codes are Hermitian self-dual codes.

We present generator matrices of CIS codes of length 6 over F4 as
follows.

C6,1 =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

 , C6,2 =

1 0 0 w2 1 w
0 1 0 1 0 1
0 0 1 1 1 1

 ,

C6,3 =

1 0 0 w2 w w
0 1 0 1 0 1
0 0 1 1 1 1

 , C6,4 =

1 0 0 1 0 0
0 1 0 1 0 1
0 0 1 1 1 1

 ,

C6,5 =

1 0 0 w 0 w2

0 1 0 1 0 1
0 0 1 1 1 1

 , C6,6 =

1 0 0 w2 1 w2

0 1 0 1 0 w
0 0 1 1 1 1

 ,

C6,7 =

1 0 0 1 0 w2

0 1 0 1 0 w
0 0 1 1 1 1

 , C6,8 =

1 0 0 w2 0 0
0 1 0 1 0 w
0 0 1 1 1 1

 ,

C6,9 =

1 0 0 1 w w2

0 1 0 1 0 0
0 0 1 1 1 1

 , C6,10 =

1 0 0 1 0 1
0 1 0 1 0 0
0 0 1 1 1 0

 ,

C6,11 =

1 0 0 w2 w 1
0 1 0 w w2 1
0 0 1 1 1 1

 , C6,12 =

1 0 0 w 1 w2

0 1 0 0 1 0
0 0 1 1 0 1

 ,

C6,13 =

1 0 0 w 0 w2

0 1 0 0 1 0
0 0 1 1 0 1

 , C6,14 =

1 0 0 w2 w2 1
0 1 0 0 1 0
0 0 1 1 0 0

 ,

C6,15 =

1 0 0 w2 0 1
0 1 0 0 1 0
0 0 1 1 0 0

 , C6,16 =

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

 .

The codes generated by C6,11 and C6,16 are Hermitian self-dual. Also,
the codes of generated by C6,6 and C6,13 are equivalent to Euclidean self-
dual codes, and the code of generated by C6,16 is Euclidean self-dual. We
list up the weight enumerators of all inequivalent CIS codes of length 6
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over F4 as follows:

WC6,1 = X6 + 12X3Y 3 + 9X2Y 4 + 36XY 5 + 6Y 6,
WC6,2 = X6 + 6X3Y 3 + 27X2Y 4 + 18XY 5 + 12Y 6,
WC6,3 = X6 + 9X3Y 3 + 18X2Y 4 + 27XY 5 + 9Y 6,
WC6,4 = X6 + 3X4Y 2 + 9X3Y 3 + 12X2Y 4 + 27XY 5 + 12Y 6,
WC6,5 = X6 + 15X3Y 3 + 12X2Y 4 + 21XY 5 + 15Y 6,
WC6,6 = X6 + 6X3Y 3 + 27X2Y 4 + 18XY 5 + 12Y 6,
WC6,7 = X6 + 12X3Y 3 + 21X2Y 4 + 12XY 5 + 18Y 6,
WC6,8 = X6 + 3X4Y 2 + 6X3Y 3 + 21X2Y 4 + 18XY 5 + 15Y 6,
WC6,9 = X6 + 3X4Y 2 + 27X2Y 4 + 24XY 5 + 9Y 6,
WC6,10 = X6 + 3X4Y 2 + 12X3Y 3 + 15X2Y 4 + 12XY 5 + 21Y 6,
WC6,11 = X6 + 45X2Y 4 + 18Y 6,
WC6,12 = X6 + 3X4Y 2 + 3X3Y 3 + 18X2Y 4 + 33XY 5 + 6Y 6,
WC6,13 = X6 + 3X4Y 2 + 12X3Y 3 + 3X2Y 4 + 36XY 5 + 9Y 6,
WC6,14 = X6 + 6X4Y 2 + 21X2Y 4 + 24XY 5 + 12Y 6,
WC6,15 = X6 + 6X4Y 2 + 6X3Y 3 + 15X2Y 4 + 18XY 5 + 18Y 6,
WC6,16 = X6 + 9X4Y 2 + 27X2Y 4 + 27Y 6.
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CIS codes, IEEE Trans. Inform. Theory 60 (9) (2014), 5283–5295.

[6] C. Carlet, P. Gaborit, J-L. Kim, P. Solé, A new class of codes for Boolean
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