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MULTIPLE SOLUTIONS RESULT FOR THE MIXED

TYPE NONLINEAR ELLIPTIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We obtain a theorem that shows the existence of mul-
tiple solutions for the mixed type nonlinear elliptic equation with
Dirichlet boundary condition. Here the nonlinear part contain the
jumping nonlinearity and the subcritical growth nonlinearity. We
first show the existence of a positive solution and next find the sec-
ond nontrivial solution by applying the variational method and the
mountain pass method in the critical point theory. By investigating
that the functional I satisfies the mountain pass geometry we show
the existence of at least two nontrivial solutions for the equation.

1. Introduction

Let Ω be a bounded subset of Rn with smooth boundary. Let h(x) ∈
Ls(Ω) for some s > n. In this paper we consider the multiple solutions
for the following nonlinear elliptic equation with jumping nonlinearity
and subcritical growth nonlinearity and Dirichlet boundary condition

∆u+ bu+ − pup−1
− = h(x) in Ω,(1.1)

u = 0 on ∂Ω,
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where 2 < p < 2∗, 2∗ = 2n
n−2

, n ≥ 3, u+ = max{u, 0}, u− = −min{u, 0},
u(x) ∈ W 1,2

0 (Ω) and h(x) ∈ Ls(Ω) for some s > n. Let us set

h(x) = tϕ1 + ϵg(x),(1.2)

in such a way that t ∈ R, ϵ > 0 is a small number, ϕ1(x) is a eigenfunction
corresponding to the eigenvalue λ1 of the eigenvalue problem

−∆u = λu in Ω,(1.3)

u = 0 on ∂Ω,

and g ∈ Ls(Ω) with
∫
Ω
gϕ1dx = 0.

This mixed type nonlinear problem contains the jumping nonlinearity
and the subcritical growth nonlinearity. The authors ([1], [2], [4], [5], [9],
[10], [11]) considered the jumping nonlinear problem. They investigate
the multiplicity results when the constant b of the nonlinear term satis-
fies b < λ1 or λk < b < λk+1, k ≥ 1. They obtain the multiplicity results
by use of the Leray-Schauder degree theory, geometry of the mapping
defined on the finite dimensional reduction subspace, mountain pass ge-
ometry in the critical point theory, the category theory in the critical
point theory. The authors ([3], [6], [7], [8], [11]) also considered the
subcritical growth nonlinear problem. They consider the multiplicity
results by use of the variational method, the critical point theory and
the category theory in the critical point theory.

Let λ1 < λ2 ≤ . . . ≤ λk ≤ . . . be the eigenvalues of the eigenvalue
problem (1.3) and ϕk the eigenfunction belonging to the eigenvalue λk,
k ≥ 1. Let H be a Sobolev space W 1,2

0 (Ω) with the norm

∥u∥2 =
∫
Ω

|∇u(x)|2dx.

In this paper we are looking for the weak solutions of (1.1) with (1.2) in
H, that is, u ∈ H such that∫

Ω

(∆u+ bu+)vdx− p

∫
Ω

up−1
− v −

∫
Ω

h(x)vdx = 0 for all v ∈ H.

Our main result is as follows:

Theorem 1.1. Assume that λ1 < b < λ2, t ∈ R and g(x) ∈ Ls(Ω)
for some s > n with

∫
Ω
gϕ1dx = 0. Then there exists a large number

t1 > 0 such that for any t with t > t1, (1.1) with (1.2) has at least two
nontrivial solutions.
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The outline of the proof of Theorem 1.1 is as follows: In section 2
we show the existence of a positive solution of (1.1) and the continuity
and the Fréchet differentiability of the corresponding functional I(u) of
(1.1) to approach the variational method. In section 3 we investigate the
sub-level sets of the functional F (the functional F is the correspond-
ing functional to find the second solution of (1.1)), the mountain pass
geometry of F and find the second nontrivial solution by applying the
mountain pass method in the critical point theory, so we prove Theorem
1.1.

2. Existence of a positive solution and the variational ap-
proach

Lemma 2.1. Let u ∈ H = W 1,2
0 (Ω, R) and let ∥ ·∥ be a Sobolev norm.

Then
(i) ∥u∥ ≥ C∥u∥L2(Ω) for some constant C > 0,
(ii) ∥u∥ = 0 if and only if ∥u∥L2(Ω) = 0,
(iii) −∆u ∈ H implies u ∈ H,
(iv) Let c be not an eigenvalue of −∆ and f ∈ W 1,2

0 (Ω, R). Then all the
solutions of

(−∆− c)u = f

belong to H.

Proof. (i) and (ii) can be checked easily by the definition of ∥ · ∥.
(iii) Let −∆u = f ∈ W 1,2

0 (Ω, R). Then f is of the form f =
∑

hmϕm.
Then

(−∆)−1f =
∑ 1

λm

hmϕm.

We note that for any c, {λm : λm < |c|} is finite. Thus we have

∥(−∆)−1f∥2 =
∑

λm
1

λ2
m

h2
m ≤

∑
h2
m,

which means that
∥(−∆)−1f∥ ≤ ∥f∥L2(Ω).

(iv) comes from (iii).

Lemma 2.2. Assume that λ1 < b and b is not an eigenvalue of −∆
with Dirichlet boundary condition. Then

(2.1) ∆u+ bu+ = 0 in H
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has only the trivial solution u = 0.

Proof. We note that u = 0 is a solution of (2.1). We rewrite (2.1) as

(−∆− λ1)u = (b− λ1)u+ + λ1u− in H.

We note that ((−∆− λ1)u, ϕ1) = 0. Thus we have

(2.2)

∫
Ω

[(b− λ1)u+ + λ1u−]ϕ1dx = 0.

Since λ1 < b, (b−λ1)u++λ1u− is greater than or equal to 0 and strictly
greater than zero if u is strictly greater than zero. The only possibility to
hold (2.2) is that u = 0. That is, u = 0 is the only solution of (2.1).

Lemma 2.3. (Existence of a positive solution) Let λ1 < b < λ2 and
g(x) ∈ Ls(Ω), s > n with

∫
Ω
gϕ1dx = 0. Then there exists a large

number t1 > 0 such that for any t > t1, the equation

∆u+ bu+ − pup−1
− = tϕ1 + ϵg(x) in H

has a positive solution u1(x).

Proof. We first consider the following equation

(2.3) ∆u+ bu = tϕ1 in H.

For t > 0, the linear equation (2.3) has a unique positive solution u∗(x) >
0, which is of the form

u∗(x) =
tϕ1(x)

b− λ1

.

We also consider the equation

(2.4) ∆u+ bu = ϵg(x) in H.

The linear equation (2.4) has a unique solution uϵg(x). For the given
g(x) ∈ Ls(Ω), s > n with

∫
Ω
gϕ1dx = 0, we can choose t0 > 0 such that

for any t > t0,

u∗ + uϵg =
tϕ1

b− λ1

+ uϵg > 0.

Next we consider the equation

(2.5) ∆u− pup−1
− = 0 in H.

Since the operator −∆ is a positive operator and −pup−1
− is negative,

the solution ǔ of (2.5) is ǔ ≤ 0. Thus there exists a large number t1 > 0
such that u1 = u∗ + uϵg + ǔ > 0 is a positive solution of (1.1) with (1.2)
for any t with t > t1. We proved the lemma.
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Now we will try to find the second nontrivial weak solutions of (1.1).
By the following Proposition 2.1, the weak solutions of (1.1) coincide
with the critical points of the corresponding functional

I ∈ C1(H,R),

(2.6) I(u) =

∫
Ω

[
1

2
|∇u|2 − b

2
|u+|2 − up

− + h(x)u]dx.

Proposition 2.1. Assume that λ1 < b, b is not an eigenvalue and
h(x) ∈ Ls, s > n. Then the functional I(u) is continuous, Fréchet
differentiable in H with Fréchet derivative

∇I(u)v =

∫
Ω

[(−∆u) · v − bu+ · v + pup−1
− · v + h(x) · v]dx.

Moreover DI ∈ C. That is, I ∈ C1.

Proof. First we shall prove that I(u) is continuous at u. For u, v ∈ H,

|I(u+ v)− I(u)| = |1
2

∫
Ω

(−∆u−∆v) · (u+ v)dx

−
∫
Ω

[
b

2
|(u+ v)+|2 + (u+ v)p− − h(x)(u+ v)]dx

−1

2

∫
Ω

(−∆u) · udx+

∫
Ω

[
b

2
|u+|2 + up

− − h(x)u]dx|

= |1
2

∫
Ω

(−∆u · v −∆v · u−∆v · v)dx

−
∫
Ω

(
b

2
|(u+ v)+|2 + (u+ v)p− − h(x)v

− b

2
|u+|2 − up

−)dx|.

Let u =
∑

hnϕn, v =
∑

knϕn. Then we have

|
∫
Ω

(−∆u) · vdx| = |
∑

λnhnkn| ≤ ∥u∥ · ∥v∥,

|
∫
Ω

(−∆v) · udx| = |
∑

λnknhn| ≤ ∥u∥ · ∥v∥,

|
∫
Ω

(−∆v) · vdx| = |
∑

λnknkn| ≤ ∥v∥2,
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from which we have

(2.7) |1
2

∫
Ω

(−∆u · v −∆v · u−∆v · v)dx| ≤ ∥u∥ · ∥v∥+ ∥v∥2.

On the other hand

||(u+ v)+|2 − |u+|2| ≤ 2u+|v|+ |v|2,

||(u+ v)−|p − |u−|p| ≤ C1|up−1
− ||v|+R2(|u−|, |v−|)

and hence we have

|
∫
Ω

(|(u+ v)+|2 − |u+|2)dx| ≤ 2∥u+∥L2(Ω)∥v∥L2(Ω) + ∥v∥2L2(Ω)(2.8)

≤ 2∥u∥ · ∥v∥+ ∥v∥2,

|
∫
Ω

(|(u+ v)−|p − |u−|p)dx|(2.9)

≤ C1∥up−1
− ∥L2(Ω)∥v∥L2(Ω) +R2(∥u∥L2(Ω), ∥v∥L2(Ω))

≤ C2∥up−1
− ∥∥v∥+R2(∥u∥, ∥v∥) = O(∥v∥).

Combining (2.7) with (2.8) and (2.9), we have

|I(u+ v)− I(u)| = O(∥v∥)

from which we can conclude that I(u) is continuous at u. Next we shall
prove that I(u) is Fréchet differentiable in H. For u, v ∈ H,

|I(u+ v)− I(u)−∇I(u)v|

= |1
2

∫
Ω

(−∆u−∆v) · (u+ v)dx

−
∫
Ω

[
b

2
|(u+ v)+|2 + (u+ v)p− − h(x)(u+ v)]dx

−1

2

∫
Ω

(−∆u) · udx+

∫
Ω

[
b

2
|u+|2 + up

− − h(x)u]dx

−
∫
Ω

(−∆u− bu+ + pup−1
− + h(x)) · vdx|

= |
∫
Ω

[
1

2
(−∆v) · v − b

2
|(u+ v)+|2 − (u+ v)p−

+
b

2
|u+|2 + up

− + bu+v − pup−1
− v]dx|.
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Combining (2.7) with (2.8) and (2.9), we have that

|I(u+ v)− I(u)−∇I(u)v| = O(∥v∥).

Thus I(u) is Fréchet differentiable in H. Similarly, it is easily checked
that I ∈ C1.

3. Existence of the second solution and proof of theorem 1.1

From now on we shall show the existence of the second nontrivial
solution of (1.1) with (1.2) by using the mountain pass geometry in the
critical point theory. We notice that the nontrivial weak solution u of
(1.1) with (1.2) is of the form u = u1 + ū, where u1 = u∗ + uϵg + ǔ is a
positive solution of (1.1) with (1.2) and ū is a nontrivial solution of the
equation

(3.1) ∆u+ b(u1 + u)+ − bu1 − p(u1 + u)p−1
− = 0 in H.

We note that the weak solutions of (3.1) coincide with the critical points
of the corresponding functional

F : H → R ∈ C1,

(3.2) F (u) =

∫
Ω

[
1

2
|∇u|2 − b

2
|(u1 + u)+|2 + bu1u− (u1 + u)p−]dx.

Thus it suffices to find the nontrivial critical points for F . Now we shall
show that F satisfies the mountain pass geometry in the critical point
theory. Assume that λ1 < b < λ2. Let us set

X = span{ϕ1(x)}, Y = X⊥.

Then X is one dimensional subspace and

H = X ⊕ Y.

We have the following inequalities:

Lemma 3.1. Assume that λ1 < b < λ2. Then
there exist ρ > 0 and a small ball Bρ with radius ρ such that Bρ∩Y ̸= ∅,

inf
u∈∂Bρ∩Y

F (u) > 0 and inf
u∈Bρ∩Y

F (u) > −∞.
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Proof. We note that

if u ∈ Y, then

∫
Ω

[−∆u · u− b

2
u2]dx ≥

1− b
λ2

2
∥u∥2 > 0.

Let u ∈ Y . Then we have

F (u) =

∫
Ω

[
1

2
|∇u|2 − b

2
u2 +

b

2
|(u1 + u)−|2 − (u1 + u)p−]dx

≥
1− b

λ2

2
∥u∥2 −

∫
Ω

(u1 + u)p−dx.

Let us define

Cp(Ω) = inf
u∈H\{0}

∫
Ω
|∇(u+ u1)|2

(
∫
Ω
(u+ u1)

p
−)

2
p

.

Then we have

F (u) ≥
1− b

λ2

2
∥u∥2 − (Cp(Ω))

− p
2∥u+ u1∥p.

Since λ2 − b > 0 and p > 2, there exist ρ > 0 and a ball Bρ with radius

ρ such that infu∈∂Bρ∩Y F (u) > 0 and infu∈Bρ∩Y F (u) > −(Cp(Ω))
− p

2∥u+
u1∥p > −∞.

Lemma 3.2. Assume that λ1 < b < λ2. Then there exist e ∈ ∂B1∩Y
and Q ≡ (B̄R ∩X)⊕ {re| 0 < r < R} such that

sup
u∈∂Q

F (u) < 0 and sup
u∈Q

F (u) <∞.

Proof. Let u ∈ X ⊕{re| r > 0}, u = v+ re, v ∈ X, e ∈ ∂B1 ∩ Y . We
note that

if u ∈ X, then

∫
Ω

[−∆u · u− b

2
u2]dx ≤

1− b
λ1

2
∥u∥2 < 0.
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For s > 0 we have

F (su) = s2(

∫
Ω

[
1

2
|∇(v + re)|2 − b

2
(v + re)2 +

b

2
|(v + re+

u1

s
)−|2]dx

−sp
∫
Ω

(v + re+
u1

s
)p−]dx

≤
s2(1− b

λ1
)

2
∥v∥2 +

s2(1− b
λn
)

2
r2 +

s2b

2

∫
Ω

|(v + re+
u1

s
)−|2dx

−sp
∫
Ω

(v + re+
u1

s
)p−]dx

for some λn ≥ λ2. Since p > 2, F (su) = F (s(v+ re))→ −∞ as s→∞.
Thus there exist R > 0, a ball BR and Q ≡ (B̄R ∩X)⊕{re| 0 < r < R}
such that if u ∈ ∂Q, then supF (u) < 0. Moreover if u ∈ Q then

supF (u) <
s2(1− b

λn
)

2
r2 + s2b

2

∫
Ω
|(v + re + u1

s
)−|2dx <∞. Thus we prove

the lemma.

Lemma 3.3. Assume that λ1 < b < λ2. Then F satisfies the (P.S.)c
condition for every real number c ∈ R.

Proof. Let c ∈ R and (un)n be a sequence such that

un ∈ H, ∀n, F (un)→ c, ∇F (un)→ 0.

We claim that (un)n is bounded. By contradiction we suppose that
∥un∥ → +∞ and set ûn = un

∥un∥ . Then we have

⟨∇F (un), ûn⟩ =
2F (un)

∥un∥
−

∫
Ω
[bun + b(un + u1)− − p(un + u1)

p−1
− ] · undx

∥un∥

+
2
∫
Ω
[ b
2
u2 − b

2
|(un + u1)−|2 + (un + u1)

p
−]dx

∥un∥
−→ 0.

Hence ∫
Ω
[bun + b(un + u1)− − p(un + u1)

p−1
− ] · undx

∥un∥

−
2
∫
Ω
[ b
2
u2
n − b

2
|(un + u1)−|2 + (un + u1)

p
−]dx

∥un∥
−→ 0.
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Thus

1

∥un∥
[

∫
Ω

[b(un + u1)− − p(un + u1)
p−1
− ] · undx

+

∫
Ω

[b|(un + u1)−|2 − 2(un + u1)
p
−]dx] −→ 0.

We claim that

lim
n→∞

∫
Ω

b(un + u1)− · undx+ b|(un + u1)−|2

∥un∥
dx = 0.

In fact,

lim
n→∞

∫
Ω

b(un + u1)− · undx+ b|(un + u1)−|2

∥un∥
dx

≤ lim
n→∞

∫
Ω

b(un + u1)− · (un + u1)dx+ b|(un + u1)−|2

∥un∥
dx

= lim
n→∞

∫
Ω

−b(un + u1)− · (un + u1)−dx+ b|(un + u1)−|2

∥un∥
dx = 0.

On the other hand,

lim
n→∞

∫
Ω

b(un + u1)− · undx+ b|(un + u1)−|2

∥un∥
dx

= lim
n→∞

∫
Ω

b(un + u1)− · ûndx+ b(un + u1)− · (ûn +
u1

∥un∥
)−dx

= lim
n→∞

∫
Ω

b(un + u1)− · ûndx+ b((un + u1)−) · (ûn)−dx

= lim
n→∞

∫
Ω

b(un + u1)− · (ûn)+dx ≥ 0.
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Thus we prove the claim. Therefore we have

0 ←− 1

∥un∥
[

∫
Ω

[b(un + u1)− − p(un + u1)
p−1
− ] · undx

+

∫
Ω

[b|(un + u1)−|2 − 2(un + u1)
p
−]dx]

=
1

∥un∥
[

∫
Ω

(−p(un + u1)
p−1
− ) · undx− 2

∫
Ω

(un + u1)
p
−dx]

≥ 1

∥un∥
[

∫
Ω

(−p(un + u1)
p−1
− ) · (un + u1)dx− 2

∫
Ω

(un + u1)
p
−dx]

=
1

∥un∥
[

∫
Ω

(p(un + u1)
p−1
− ) · (un + u1)−dx− 2

∫
Ω

(un + u1)
p
−dx]

= (p− 2)

∫
Ω
(un + u1)

p
−dx

∥un∥
= (p− 2)

∥(un + u1)−∥pLp(Ω)

∥un∥
.

Since p > 2,

∥(un + u1)−∥pLp(Ω)

∥un∥
converges to 0.

On the other hand

(3.3) ∥p(un + u1)
p−1
− ∥ ≤ C1∥(un + u1)

p−1
− ∥L2∗′ (Ω)

for suitable constant C1. Then we have

∥bun + b(un + u1)− − p(un + u1)
p−1
−

∥un∥
∥ ≤ 2b+ C1∥

(un + u1)
p−1
−

∥un∥
∥
L2∗′ (Ω)

.

If p ≥ 2∗
′
(p − 1), then by the Hölder′s inequality, it is easily checked

that ∥ (un+u1)
p−1
−

∥un∥ ∥
L2∗′ (Ω)

can be estimated in terms of
∥(un+u1)−∥p

Lp(Ω)

∥un∥ . If

p ≤ 2∗
′
(p− 1), then by the standard interpolation inequalities,

∥(un + u1)
p−1
−

∥un∥
∥
L2∗′ (Ω)

≤ C2(
∥(un + u1)−∥pLp(Ω)

∥un∥
)
(p−1)α

p ∥(un + u1)−∥β

for some constant C2, where α > 0 is such that α
p
+ 1−α

2∗
= 1

2∗′
and

β = (1−α)(p− 1)− 1− (p−1)α
p

. Since p− 1 ≤ 2∗− 1− (2∗− p)(1− 2∗
′

2∗
),
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β < 0. Thus we have

∥p(un + u1)
p−1
−

∥un∥
∥ ≤ C2(

∥(un + u1)−∥pLp(Ω)

∥un∥
)
(p−1)α

p ∥(un + u1)−∥β and

∥bun + b(un + u1)− − p(un + u1)
p−1
−

∥un∥
∥

≤ 2b+ C2(
∥(un + u1)−∥pLp(Ω)

∥un∥
)
(p−1)α

p ∥(un + u1)−∥β

for a constant C2. Since
∥(un+u1)−∥p

∥un∥ converges to 0 and β < 0,

(3.4)
p(un + u1)

p−1
−

∥un∥
converges to 0 and

(3.5)
bun + b(un + u1)− − p(un + u1)

p−1
−

∥un∥
converges.

By (3.4),∫
Ω

(un + u1)
p−1
−

∥un∥
dx =

∫
Ω

(ûn +
u1

∥un∥
)p−1
− ∥un∥pdx −→ 0.

Thus ûn ⇀ 0. We get

∇F (un)

∥un∥
= −∆ûn −

bun + b(un + u1)− − p(un + u1)
p−1
−

∥un∥
−→ 0.

By (3.5), −∆ûn converges. Since (ûn)n is bounded and the inverse oper-
ator of −∆ is a compact mapping, up to subsequence, (ûn)n has a limit.
Since ûn ⇀ 0, we get ûn → 0, which is a contradiction to the fact that
∥ûn∥ = 1. Thus (un)n is bounded. We can now suppose that un ⇀ u for
some u ∈ H. We claim that un → u strongly. We have that

⟨∇F (un), un⟩

= (∥un∥2 −
∫
Ω

[b(un + u1)+un − bu1 − p(un + u1)
p−1
− un]dx) −→ 0.

Since
∫
Ω
[b(un+u1)+un− bu1− p(un+u1)

p−1
− un]dx −→

∫
Ω
[b(u+u1)+u−

bu1−p(u+u1)
p−1
− u]dx, ∥un∥2 converge. Thus (un)n converges to some u

strongly with ∇F (u) = lim∇F (un) = 0. Thus we prove the lemma.
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[Proof of Theorem 1.1]
Let X = span{ϕ1(x)} and Y = X⊥. Then X is a one dimensional
subspace and H = X ⊕ Y . From Proposition 2.1 we can deduce that
the functional F belong to C1(H,R1). By Lemma 3.1 and Lemma 3.2,
there exist ρ > 0, a small ball Bρ with radius ρ, e ∈ ∂B1 ∩ Y and
Q ≡ (B̄R ∩X)⊕ {re| 0 < r < R} such that Bρ ∩ Y ̸= ∅,

sup
u∈∂Q

F (u) < inf
u∈∂Bρ∩Y

F (u)

and

sup
u∈Q

F (u) <∞ and −∞ < inf
u∈Bρ∩Y

F (u).

By Lemma 3.3, the functional F (u) satisfies the (P.S.)c condition for
any c ∈ R. Let us set

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.

Then by the mountain pass theorem, F possesses a critical value c ≥ 0
which can be characterized as

c = inf
γ∈Γ

max
u∈Q

F (γ(u)).

Thus (3.1) has a nontrivial solution ū, so (1.1) has at least two nontrivial
solutions, one of which is a positive solution u1 and the other solution is
of the form u = u1 + ū.
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