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ON THE STABILITY OF THE GENERALIZED

QUADRATIC AND ADDITIVE FUNCTIONAL

EQUATION IN RANDOM NORMED

SPACES VIA FIXED POINT METHOD

Sun Sook Jin and Yang-Hi Lee∗

Abstract. In this paper, we prove the stability in random normed

spaces via fixed point method for the functional equation

f(x+ 2y)− 2f(x+ y) + 2f(x− y)− f(x− 2y) = 0.

1. Introduction

In 1940, S. M. Ulam [20] raised a question concerning the stability
of homomorphisms: Given a group G1, a metric group G2 with the
metric d(·, ·), and a positive number ε, does there exist a δ > 0 such
that if a mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G1 then there exists a homomorphism F : G1 → G2 with

d(f(x), F (x)) < ε

for all x ∈ G1? As mentioned above, when this problem has a solution,
we say that the homomorphisms from G1 to G2 are stable. In 1941,
D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings under the assumption that G1 and
G2 are Banach spaces. Hyers’ result was generalized by T. Aoki [1]
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for additive mappings and Th. M. Rassias [16] for linear mappings by
considering the stability problem with unbounded Cauchy differences.
The paper of Th. M. Rassias has provided a lot of influence in the de-
velopment of stability problems. The terminology Hyers-Ulam-Rassias
stability originated from these historical background. During the last
decades, the stability problems of functional equations have been ex-
tensively investigated by a number of mathematicians, see [2]-[4], [8],
[9]-[12].

Recall, almost all subsequent proofs in this very active area have
used Hyers’ method, called a direct method. Namely, the function
F , which is the solution of a functional equation, is explicitly con-
structed, starting from the given function f , by the formulae F (x) =
limn→∞

1
2n f(2

nx) or F (x) = limn→∞ 2nf( x
2n ). In 2003, V. Radu [15]

observed that the existence of the solution F of a functional equation
and the estimation of the difference with the given function f can be
obtained from the fixed point alternative. In 2008, D. Mihet and V.
Radu [14] applied this method to prove the stability theorems of the
Cauchy functional equation:

(1.1) f(x+ y)− f(x)− f(y) = 0

in random normed spaces. We call solutions of (1.1) additive maps.
Recently, Jun and Kim [6,7] established the general solution and inves-
tigated the stability of the generalized quadratic and additive functional
equation:

(1.2) f(x+ 2y)− 2f(x+ y) + 2f(x− y)− f(x− 2y) = 0

by using the direct method.
In this paper, using the fixed point method, we prove the stability

for the functional equation (1.2) in random normed spaces. It is easy
to see that the mapping f(x) = ax2+bx+c is a solution of (1.2). Every
solution of the generalized quadratic and additive functional equation
(1.2) is said to be a general quadratic mapping.

2. Preliminaries

In this section, we state the usual terminology, notations and con-
ventions of the theory of random normed spaces, as in [18,19]. Firstly,
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the space of all probability distribution functions is denoted by

∆+

:= {F : R ∪ {−∞,∞} → [0, 1]
∣∣F is left-continuous and nondecreasing

on R, where F (0) = 0 and F (+∞) = 1}.

And let the subset D+ ⊆ ∆+ be the set D+ := {F ∈ ∆+|l−F (+∞) =
1}, where l−f(x) denotes the left limit of the function f at the point
x. The space ∆+ is partially ordered by the usual pointwise ordering
of functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R.
The maximal element for ∆+ in this order is the distribution function
ε0 : R ∪ {0} → [0,∞) given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 2.1. ([18]) A mapping τ : [0, 1]× [0, 1] → [0, 1] is called
a continuous triangular norm (briefly, a continuous t-norm) if τ satis-
fies the following conditions:

(a) τ is commutative and associative;
(b) τ is continuous;
(c) τ(a, 1) = a for all a ∈ [0, 1];
(d) τ(a, b) ≤ τ(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b) =
min(a, b) and τL(a, b) = max(a+ b− 1, 0).

Definition 2.2. ([19]) A random normed space (briefly, RN-space
) is a triple (X,Λ, τ), where X is a vector space, τ is a continuous
t-norm, and Λ is a mapping from X into D+ such that the following
conditions hold:
(RN1) Λx(t) = ε0(t) for all t > 0 if and only if x = 0,
(RN2) Λαx(t) = Λx(t/|α|) for all x in X, α ̸= 0 and all t ≥ 0,
(RN3) Λx+y(t+ s) ≥ τ(Λx(t),Λy(s)) for all x, y ∈ X and all t, s ≥ 0.

If (X, ∥·∥) is a normed space, we can define a mapping Λ : X → D+

by

Λx(t) =
t

t+ ∥x∥
for all x ∈ X and t > 0. Then (X,Λ, τM ) is a random normed space,
which is called the induced random normed space.
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Definition 2.3. Let (X,Λ, τ) be an RN -space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X
if, for every t > 0 and ε > 0, there exists a positive integer N such
that Λxn−x(t) > 1− ε whenever n ≥ N .
(ii) A sequence {xn} in X is called a Cauchy sequence if, for ev-
ery t > 0 and ε > 0, there exists a positive integer N such that
Λxn−xm(t) > 1− ε whenever n ≥ m ≥ N .
(iii) An RN-space (X,Λ, τ) is said to be complete if and only if every

Cauchy sequence in X is convergent to a point in X.

Theorem 2.4. ([18]) If (X,Λ, τ) is an RN-space and {xn} is a
sequence such that xn → x, then limn→∞ Λxn(t) = Λx(t).

3. On the stability of a generalized quadratic and additive
functional equation in random normed spaces via fixed point
method

We recall the fundamental result in the fixed point theory.

Theorem 3.1. ([13] or [17]) Suppose that a complete generalized
metric space (X, d), which means that the metric d may assume infi-
nite values, and a strictly contractive mapping J : X → X with the
Lipschitz constant 0 < L < 1 are given. Then, for each given element
x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:
(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) <
+∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Let X and Y be vector spaces. We use the following abbreviation
for a given mapping f : X → Y by

Df(x, y) :=f(x+ 2y)− 2f(x+ y) + 2f(x− y)− f(x− 2y)

for all x, y ∈ X.



Functional equation in random normed spaces 441

Lemma 3.2. Suppose that f : X → Y is a mapping such that
Df(x, y) = 0 for all x, y ∈ X\{0}, then f is a general quadratic map-
ping.

Proof. By the definition, it is clear that Df(x, 0) = 0 for all x ∈ X.
Moreover, we have that

Df(0, x) = Df(2x, 2x)−Df(4x, x)− 2Df(3x, x)

− 2Df(2x, x)− 2Df(x, x)

= 0

for all x ∈ X \ {0}, which implies that Df(x, y) = 0 for all x, y ∈ X.�

Now we will establish the stability for the functional equation (1.2)
in random normed spaces via fixed point method.

Theorem 3.3. LetX be a linear space, (Z,Λ′, τM ) be an RN-space,
(Y,Λ, τM ) be a complete RN-space and φ : (X \ {0})2 → Z. Suppose
that φ satisfies one of the following conditions:
(i) Λ′

αφ(x,y)(t) ≤ Λ′
φ(2x,2y)(t) for some 0 < α < 2,

(ii) Λ′
φ(2x,2y)(t) ≤ Λ′

αφ(x,y)(t) for some 4 < α

for all x, y ∈ X and t > 0. If f : X → Y is a mapping such that

(3.1) ΛDf(x,y)(t) ≥ Λ′
φ(x,y)(t)

for all x, y ∈ X \ {0} and t > 0, then there exists a unique general
quadratic mapping F : X → Y such that

(3.2) Λf(x)−F (x)(t) ≥

 M
(
x, 2(2−α)t

11

)
if φ satisfies (i),

M
(
x, (α−4)t

7

)
if φ satisfies (ii)

for all x ∈ X \ {0} and t > 0, where

M(x, t)

:= τM
{
Λ′
φ(2x,2x)(t),Λ

′
φ(4x,x)(t),Λ

′
φ(3x,x)(t),Λ

′
φ(2x,x)(t),Λ

′
φ(x,x)(t),

Λ′
φ(−2x,−2x)(t),Λ

′
φ(−4x,−x)(t),Λ

′
φ(−3x,−x)(t),Λ

′
φ(−2x,−x)(t),

Λ′
φ(−x,−x)(t),Λ

′
φ( x

2 ,
x
2 )
(t),Λ′

φ(x, x2 )
,Λ′

φ(− x
2 ,−

x
2 )
(t),Λ′

φ(−x,− x
2 )
(t)

}
.

Moreover if α < 1 and Λ′
φ(x,y) is continuous in x, y ∈ X \ {0} under

the condition (i), then f is a general quadratic mapping.
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Proof. Since Dg(x, y) = Df(x, y) for the mapping g defined by
g(x) = f(x) − f(0), we can assume that f(0) = 0 without loss of
the generality. We will prove the theorem in two cases, φ satisfies the
condition (i) or (ii).

Case 1. Assume that φ satisfies the condition (i). Let S be the set
of all functions g : X → Y with g(0) = 0 and introduce a generalized
metric on S by

d(g, h) := inf
{
u ∈ R+

∣∣Λg(x)−h(x)(ut) ≥ M(x, t) for all x ∈ X \ {0}
}
.

Consider the mapping J : S → S defined by

Jf(x) :=
f(2x)− f(−2x)

4
+

f(2x) + f(−2x)

8

then we have

Jnf(x) =
1

2

(
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

)
for all x ∈ X. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary constant
with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3), for the
given 0 < α < 2 we have

ΛJg(x)−Jf(x)

(αu
2
t
)

= Λ 3(g(2x)−f(2x))
8 − g(−2x)−f(−2x)

8

(αu
2
t
)

≥ τM

{
Λ 3(g(2x)−f(2x))

8

(
3αut

8

)
,Λ g(−2x)−f(−2x)

8

(
αut

8

)}
≥ τM

{
Λg(2x)−f(2x)(αut),Λg(−2x)−f(−2x) (αut)

}
≥ M(2x, αt)

≥ M(x, t)

for all x ∈ X \ {0}, which implies that

d(Jf, Jg) ≤ α

2
d(f, g).
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That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant α

2 . Since the equality

f(x)− Jf(x)

=
1

8

(
−Df(2x, 2x) +Df(4x, x) + 2Df(3x, x) + 2Df(2x, x)

+ 2Df(x, x) +Df(−2x,−2x)−Df(−4x,−x)− 2Df(−3x,−x)

− 2Df(−2x,−x)− 2Df(−x,−x)− 2Df
(x
2
,
x

2

)
−Df

(
x,

x

2

)
− 2Df

(
− x

2
,−x

2

)
−Df

(
− x,−x

2

))
holds for all x ∈ X \ {0}, by (3.1), we see that

Λf(x)−Jf(x)

(
11t

4

)
≥ τM

{
ΛDf(2x,2x)

8

(
t

8

)
,ΛDf(4x,x)

8

(
t

8

)
,ΛDf(3x,x)

4

(
t

4

)
,

ΛDf(2x,x)
4

(
t

4

)
,ΛDf(x,x)

4

(
t

4

)
,ΛDf(−2x,−2x)

8

(
t

8

)
,

ΛDf(−4x,−x)
8

(
t

8

)
,ΛDf(−3x,−x)

4

(
t

4

)
,ΛDf(−2x,−x)

4

(
t

4

)
,

ΛDf(−x,−x)
4

(
t

4

)
,ΛDf( x

2
, x
2
)

4

(
t

4

)
,ΛDf(x, x

2
)

8

(
t

8

)
,

ΛDf(− x
2
,− x

2
)

4

(
t

4

)
,ΛDf(−x,− x

2
)

8

(
t

8

)}
≥ M(x, t)

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 11
4 < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈
S|d(f, g) < ∞}, which is represented by

F (x) := lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)

2n+1

)
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for all x ∈ X. Since

d(f, F ) ≤ 1

1− α
2

d(f, Jf) ≤ 11

2(2− α)

the inequality (3.2) holds. Next we will show that F is a general
quadratic mapping. Let x, y ∈ X \ {0}. Then by (RN3) we have

ΛDF (x,y)(t) ≥ τM

{
Λ(F−Jnf)(x+2y)

(
t

8

)
,Λ2(Jnf−F )(x+y)

(
t

8

)
,

Λ2(F−Jnf)(x−y)

(
t

8

)
,Λ(Jnf−F )(x−2y)

(
t

8

)
,

ΛDJnf(x,y)

(
t

2

)}
(3.3)

for all n ∈ N. The first four terms on the right hand side of the above
inequality tend to 1 as n → ∞ by the definition of F . Now consider
that

ΛDJnf(x,y)

(
t

2

)
≥ τM

{
ΛDf(2nx,2ny)

2·4n

(
t

8

)
,ΛDf(−2nx,−2ny)

2·4n

(
t

8

)
,

ΛDf(2nx,2ny)
2·2n

(
t

8

)
,ΛDf(−2nx,−2ny)

2·2n

(
t

8

)}
≥ τM

{
ΛDf(2nx,2ny)

(
4nt

4

)
,ΛDf(−2nx,−2ny)

(
4nt

4

)
,

ΛDf(2nx,2ny)

(
2nt

4

)
,ΛDf(−2nx,−2ny)

(
2nt

4

)}
≥ τM

{
Λ′
φ(x,y)

(
4nt

4αn

)
,Λ′

φ(−x,−y)

(
4nt

4αn

)
,

Λ′
φ(x,y)

(
2nt

4αn

)
,Λ′

φ(−x,−y)

(
2nt

4αn

)}
which tends to 1 as n → ∞ by (RN3) and 2

α > 1 for all x, y ∈ X \ {0}.
Therefore it follows from (3.3) that

ΛDF (x,y)(t) = 1
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for each x, y ∈ X \ {0} and t > 0. By (RN1) and Lemma 3.2, this
means that DF (x, y) = 0 for all x, y ∈ X. Assume that 0 < α < 1
and Λ′

φ(x,y) is continuous in x, y ∈ X \ {0}. If m, a, b, c, d are any fixed

integers with a, c ̸= 0, then we have

lim
n→∞

Λ′
φ((2na+b)x,(2nc+d)y)(t) ≥ lim

n→∞
Λ′
φ((a+ b

2n )x,(c+
d
2n )y)

(
t

αn

)
= lim

n→∞
Λ′
φ((a+ b

2n )x,(c+
d
2n )y)

(mt)

=Λ′
φ(ax,cy)(mt)

for all x, y ∈ X \ {0} and t > 0. Since m is arbitrary, we have

lim
n→∞

Λ′
φ((2na+b)x,(2nc+d)y)(t) ≥ lim

m→∞
Λ′
φ(ax,cy)(mt) = 1

for all x, y ∈ X \ {0} and t > 0. From these, we get the inequality

Λ2(F−f)(x)(45t)

≥ lim
n→∞

τM
{
Λ(F−f)((−2n+1)x)(11t),Λ2(F−f)((2n+1+1)x)(22t),

Λ(f−F )((3·2n+1)x)(11t),Λ(Df−DF )((2n+1)x,−2nx)(t)
}

≥ lim
n→∞

τM
{
M ((−2n + 1)x, 2(2− α)t) ,M

(
(2n+1 + 1)x, 2(2− α)t

)
,

M ((3 · 2n + 1)x, 2(2− α)t) ,Λ′
φ((2n+1)x,−2nx)(t)

}
= 1

for all x ∈ X \ {0}. From the above equality and the fact f(0) = 0 =
F (0), we obtain f ≡ F . This completes the proof of this case.

Case 2. We take α > 4 and assume that φ satisfies the condition
(ii). Let the set (S, d) be as in the proof of the case 1. Now we consider
the mapping J : S → S defined by

Jg(x) := g
(x
2

)
− g

(
−x

2

)
+ 2

(
g
(x
2

)
+ g

(
−x

2

))
for all g ∈ S and x ∈ X. Notice that

Jng(x) = 2n−1
(
g
( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g
( x

2n

)
+ g

(
− x

2n

))
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for all x ∈ X and n ∈ N. Let f, g ∈ S and let u ∈ [0,∞] be an arbitrary
constant with d(g, f) ≤ u. From the definition of d, (RN2), and (RN3),
we have

ΛJg(x)−Jf(x)

(
4u

α
t

)
=Λ3(g( x

2 )−f( x
2 ))+g(− x

2 )−f(− x
2 )

(
4u

α
t

)
≥τM

{
Λ3(g( x

2 )−f( x
2 ))

(
3u

α
t

)
,Λg(− x

2 )−f(− x
2 )

(u

α
t
)}

≥τM

{
Λg( x

2 )−f( x
2 )

(u

α
t
)
,Λg(− x

2 )−f(− x
2 )

(u

α
t
)}

≥M

(
x

2
,
t

α

)
≥M(x, t)

for all x ∈ X, which implies that

d(Jf, Jg) ≤ 4

α
d(f, g).

That is, J is a strictly contractive self-mapping of S with the Lipschitz
constant 0 < 4

α < 1. Since the equality

f(2x)− Jf(2x)

= −1

4

(
−Df(2x, 2x) +Df(4x, x) + 2Df(3x, x) + 2Df(2x, x)

+ 2Df(x, x) +Df(−2x,−2x)−Df(−4x,−x)− 2Df(−3x,−x)

− 2Df(−2x,−x)− 2Df(−x,−x)− 4Df
(x
2
,
x

2

)
− 2Df

(
x,

x

2

)
− 4Df

(
− x

2
,−x

2

)
− 2Df

(
− x,−x

2

))
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holds for all x ∈ X \ {0}, we get

Λf(2x)−Jf(2x) (7t)

≥ τM

{
ΛDf(2x,2x)

4

(
t

4

)
,ΛDf(4x,x)

4

(
t

4

)
,ΛDf(3x,x)

2

(
t

2

)
,

ΛDf(2x,x)
2

(
t

2

)
,ΛDf(x,x)

2

(
t

2

)
,ΛDf(−2x,−2x)

4

(
t

4

)
,

ΛDf(−4x,−x)
4

(
t

4

)
,ΛDf(−3x,−x)

2

(
t

2

)
,ΛDf(−2x,−x)

2

(
t

2

)
,

ΛDf(−x,−x)
2

(
t

2

)
,ΛDf( x

2 ,
x
2 )

(t) ,ΛDf(x, x
2
)

2

(
t

2

)
,

ΛDf(− x
2 ,−

x
2 )

(t) ,ΛDf(−x,− x
2
)

2

(
t

2

)}
≥ M(x, t)

for all x ∈ X \ {0}. From this, we have

Λf(x)−Jf(x)

(
7t

α

)
≥M

(
x

2
,
t

α

)
≥ M(x, t)

for all x ∈ X\{0}. It means that d(f, Jf) ≤ 7
α < ∞ by the definition of

d. Therefore according to Theorem 3.1, the sequence {Jnf} converges
to the unique fixed point F : X → Y of J in the set T = {g ∈
S|d(f, g) < ∞}, which is represented by

F (x) := lim
n→∞

(
2n−1

(
f
( x

2n

)
− f

(
− x

2n

))
+

4n

2

(
f
( x

2n

)
+ f

(
− x

2n

)))
for all x ∈ X. Since

d(f, F ) ≤ 1

1− 4
α

d(f, Jf) ≤ 7

α− 4

the inequality (3.2) holds. Next we will show that F is a general
quadratic . Recall that the inequality (3.3) holds for all x, y ∈ X \ {0}
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and n ∈ N. The first four terms on the right hand side of the inequality
(3.3) tend to 1 as n → ∞ by the definition of F . Now consider that

ΛDJnf(x,y)

(
t

2

)
≥τM

{
Λ22n−1Df( x

2n , y
2n )

(
t

8

)
,Λ22n−1Df(−x

2n ,−y
2n )

(
t

8

)
,

Λ2n−1Df( x
2n , y

2n )

(
t

8

)
,Λ−2n−1Df(−x

2n ,−y
2n )

(
t

8

)}
≥τM

{
Λ′
φ(x,y)

(
αnt

4n+1

)
,Λ′

φ(−x,−y)

(
αnt

4n+1

)
,

Λ′
φ(x,y)

(
αnt

2n+2

)
,Λ′

φ(−x,−y)

(
αnt

2n+2

)}
which tends to 1 as n → ∞ by (RN3) for all x, y ∈ X \ {0}. Therefore
it follows from (3.3) that

ΛDF (x,y)(t) = 1

for each x, y ∈ X \ {0} and t > 0. By (RN1) and Lemma 3.2, this
means that DF (x, y) = 0 for all x, y ∈ X. It completes the proof of
this theorem. �

Now we have a generalized Hyers-Ulam stability of the general qua-
dratic functional equation (1.2) in the framework of normed spaces.
Let Λx(t) = t

t+∥x∥ . Then (X,Λ, τM ) is an induced random normed

space, which leads us to get the following result.

Corollary 3.4. Let X be a linear space, Y be a complete normed-
space, and φ : (X \ {0})2 → [0,∞). Suppose that φ satisfies one of the
following conditions:
(i) αφ(x, y) ≥ φ(2x, 2y) for some 0 < α < 2,
(ii) φ(2x, 2y) ≥ αφ(x, y) for some 4 < α
for all x, y ∈ X \ {0}. If f : X → Y is a mapping such that

∥Df(x, y)∥ ≤ φ(x, y)

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

∥f(x)− F (x)∥ ≤

{ 11Φ(x)
2(2−α) if φ satisfies (i),

7Φ(x)
α−4 if φ satisfies (ii)
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for all x ∈ X \ {0}, where Φ(x) is defined by

Φ(x) = max

{
φ(2x, 2x), φ(4x, x), φ(3x, x), φ(2x, x), φ(x, x), φ(−2x,−2x),

φ(−4x,−x), φ(−3x,−x), 2φ(−2x,−x), φ(−x,−x),

φ
(x
2
,
x

2

)
, φ

(
x,

x

2

)
, φ

(
− x

2
,−x

2

)
, φ

(
− x,−x

2

)}
.

Moreover, if 0 < α < 1 and φ is continuous on (X \ {0})2 under the
condition (i), then f is itself a general quadratic mapping.

Now we have Hyers-Ulam-Rassias stability results of the general
quadratic functional equation (1.2).

Corollary 3.5. Let X be a normed space, p ∈ R\[1, 2] and Y a
complete normed-space. If f : X → Y is a mapping such that

∥Df(x, y)∥ ≤ ∥x∥p + ∥y∥p

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

∥f(x)− F (x)∥ ≤

{ 11(4p+1)∥x∥p

2(2−2p) if 0 ≤ p < 1,

7(4p+1)∥x∥p

2p−4 if p > 2

for all x ∈ X \ {0} and f is itself a general quadratic mapping if p < 0.

Proof. If we denote by φ(x, y) = ∥x∥p + ∥y∥p, then the induced
random normed space (X,Λx, τM ) holds the conditions of Corollary
3.4 with α = 2p. �

Corollary 3.6. Let X be a normed space, p+ q ∈ R\[1, 2] and Y
a complete normed-space. If f : X → Y is a mapping such that

∥Df(x, y)∥ ≤ ∥x∥p∥y∥q

for all x, y ∈ X \ {0}, then there exists a unique general quadratic
mapping F : X → Y such that

∥f(x)− F (x)∥ ≤



11·∥2x∥p+q

2(2−2p+q) if 0 ≤ p+ q < 1 and p ≤ q

11·4p∥x∥p+q

2(2−2p+q) if 0 ≤ p+ q < 1 and q ≤ p

7·∥2x∥p+q

2p−4 if p+ q > 2 and p ≤ q

7·4p∥x∥p+q

(2p−4)2p if p+ q > 2 and q ≤ p
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for all x ∈ X \ {0} and f is itself a general quadratic mapping if
p+ q < 0.

Proof. If we denote by φ(x, y) = ∥x∥p∥y∥q, then the induced random
normed space (X,Λx, τM ) holds the conditions of Corollary 3.4 with
α = 2p+q. �
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