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THE EXTENDIBILITY OF DIOPHANTINE PAIRS WITH

PROPERTY D(−1)

Jinseo Park

Abstract. A set {a1, a2, · · · , am} of m distinct positive integers is
called a D(−1)-m-tuple if the product of any distinct two elements
in the set decreased by one is a perfect square. In this paper, we find
a solution of Pellian equations which is constructed by D(−1)-triples
and using this result, we prove the extendibility of D(−1)-pair with
some conditions.

1. Introduction

Let n be an integer. A set {a1, a2, · · · , am} of m positive integers is
called a Diophantine m-tuple with the property D(n), if the product of
any two of them increased by n is a perfect square. The set called simply
D(n)-m-tuple. For the case n = 1, Fermat [3] first found the Diophantine
quadruple {1, 3, 8, 120}. This set is called Fermat’s set. Euler found
that the number 777480/8288641 makes the Fermat’s set to rational
Diophantine quintuple. Actually, Diophantus found the Diophantine
quadruple {1/16, 33/16, 17/4, 105/16} which consists of distinct rational
numbers. In 1969, A. Baker and H. Davenport proved that the D(1)-
triple {1, 3, 8} cannot be extended to a Diophantine quintuple. This
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result was generalized by Y. Fujita [9], who showed that the set {k −
1, k + 1} for an integer k cannot be extended to a D(1)-quintuple.

Let us consider about the importance of extendibility of D(1)-triple.
We can find the answer in the relation with the elliptic curve. We have
to solve the equations

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the D(1)-triple {a, b, c} to D(1)-quadruple. Hence, we have
the equation

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1),

which is the elliptic curve by the product of three equations. If we prove
the non-extendibility of D(1)-triple then it suggests that there exist only
finitely many integer points on E induced by some D(1)-triples. For
example, A. Dujella [5] proved that the elliptic curve

Ek : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

has four integer points

(0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1))

under assumption that rank(Ek(Q)) = 1. There are various papers
which contain the similar results [6,10]. Hence, it is important not only
how to prove the extendibility of D(1)-triple but also which cases are
proved. A folklore conjecture was that there does not exist a D(1)-
quintuple. Recently, the conjecture has been proved by B. He, A. Togbé
and V. Ziegler [12].

In the case n = −1, the conjecture is that there does not exist D(−1)-
quadruple. The case n = −1 is related to an old problem of Diophantus
and Euler. Diophantus studied the problem of finding numbers such that
the product of any two numbers increased by the sum of these gives a
square, that is

xy + x+ y = (x+ 1)(y + 1)− 1 = �.

We see that the problem of finding integer m-tuples with the above
property is equivalent to finding D(−1)-m-tuples.

It is known that some particular D(−1)-triples cannot be extended
to D(−1)-quadruple. In 1985, E. Brown [2] proved that the set {1, 2, 5}
cannot be extended to D(−1)-quadruple. Also, Mohanty and Ramasamy
proved the extendiblity of D(−1)-triple {1, 5, 10}. Furthermore, the ex-
tendiblity of the sets {1, 2, 145}, {1, 2, 4901}, {1, 5, 65}, {1, 5, 20737},
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{1, 10, 17}, {1, 26, 37} to D(−1)-quadruple proved by Kedlaya [13]. The
important result of the extendiblity of D(−1)-m-tuple was proved by
A. Dujella and C. Fuchs [7]. They proved that there does not exist a
D(−1)-quadruple {a, b, c, d} with 2 < a < b < c < d. This means if
{a, b, c, d} is a D(−1)-quadurple then a = 1, b ≥ 5 and obviously b
should have the form α2 + 1 for an integer α.

Let Fk be the k-th Fibonacci number which defined by F0 = 0, F1 = 1
and Fk+2 = Fk+1 + Fk. The aim of this paper is to give a solution of
Pellian equations which is constructed by D(−1)-triples

{1, F 2
2k+2 + 1, 4F 4

2k+2 + 1}
and

{1, F 2
2k+2 + 1, (4F 3

2k+2 − 4F 2
2k+2 + 3F2k+2 − 1)2 + 1}.

According to these results, we prove the extendiblity of D(−1)-pair

{1, F 2
2k+2 + 1}

with some conditions.

2. Preliminaries

2.1. The properties of third elements. Let {1, b, c} be a Diophan-
tine triple with the property D(−1) and 1 < b < c. Then there exist
positive integers r, s, t which satisfy the following equations

b− 1 = r2, c− 1 = s2, bc− 1 = t2.

Eliminating c from these equations, we obtain the Diophantine equation

(1) t2 − bs2 = b− 1 = r2,

and easily find the form of solutions of equation is

(t+ s
√
b) = (t0 + s0

√
b)(2b− 1 + 2r

√
b)ν .

From the definition of s, we find the form of third elements c = cν of
Diophantine triple with the property D(−1), that is,

cν =
1

4b
[(t0+s0

√
b)2(2b−1+2

√
b)2ν+(t0−s0

√
b)2(2b−1−2

√
b)2ν+2r2+4].

The equation (1) has at least three classes of solutions belonging to
(t0, s0) = (r, 0), (b − r,±(r − 1)). We call a positive solution (t, s) of
equation (1) regular if (t, s) belongs to one of these three classes. The
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following theorem gives us the upper bound of third elements c in the
Diophantine triple with the property D(−1).

Theorem 2.1. [8, Theorem 1] If {1, b, c, d} with b < c < d is a
D(−1)-quadruple, then c < 9.6b4.

2.2. The fundamental solutions of the Pell equations. We have
to solve the system

(2) d− 1 = x2, bd− 1 = y2, cd− 1 = z2

to extend the Diophantine triple with the property D(−1) to the Dio-
phantine quadruple with the property D(−1). From the equations (2),
we obtain the following system of Pell equations

z2 − cx2 = c− 1(3)

bz2 − cy2 = c− b.(4)

Using the following theorem, we get the fundamental solutions of Pell
equations.

Lemma 2.2. [6, Lemma 1] If (z, x) and (z, y) with positive integers
x, y, z are solutions of (3) and (4), respectively then there exist integers
z0, x0 and z1, y1, with

1. (z0, x0) and (z1, y1) are solutions of (3) and (4), respectively.
2. the folliwng inequalities are satisfied:

|x0| < s, 0 < z0 < c,(5)

|y1| < t, 0 < z1 < c,(6)

and there exist integers m,n ≥ 0 such that

z + x
√
c = (z0 + x0

√
c)(s+

√
c)2m,(7)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)2n.(8)

By (7), we may write z = vm, where

(9) v0 = z0, v1 = (2c− 1)z0 + 2scx0, vm+2 = (4c− 2)vm+1 − vm,
and (8), we may writhe z = wn, where

(10) w0 = z1, w1 = (2bc− 1)z1 + 2tcy1, wm+2 = (4bc− 2)wn+1 − wn.
Our system of equations (3) and (4) is thus transformed to finitely many
equations of the form z = vm = wn. Moreover, we have the following
properties.
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Lemma 2.3. [6, Lemma 2] If vm = wn, n 6= 0 then

1. m ≡ n (mod 2),
2. n ≤ m ≤ 2n,
3. m2z0 + smx0 ≡ bn2z1 + tny1 (mod 4c).

2.3. Congruence relation between solutions of Pell equations.
From (9) and (10), we have the following congruence equations by in-
duction.

Lemma 2.4. [7, Lemma 2]

vm ≡ (−1)m(z0 − 2cm2z0 − 2csmx0) (mod 8c2),

wn ≡ (−1)m(z1 − 2bcn2z1 − 2ctny1) (mod 8c2).

It is natually to ask when does vm = wn have a solution and if there
exists a solution then what values are possible. The following lemma
gives us the answer.

Lemma 2.5. [6, Lemma 5] Let the integers z0, z1, x0, y1 be as in Lemma
2.2. If c ≤ b9 then

z0 = z1 = s, x0 = 0, y1 = ±
√
b− 1 = ±r.

By Theorem 2.1, we know that the set {1, b, c} can be a D(−1)-triple
when c ≤ 9.6b4. Therefore, the fundamental solution of Pell equation is
as expressed in the Lemma 2.5.

2.4. Some theorems for applying the reduction method. From
(7) and (8), and sum of their conjugates, respectively, we have

vm =
1

2
[(z0 + x0

√
c)(s+

√
c)2m + (z0 − x0

√
c)(s−

√
c)2m],

wn =
1

2
√
b
[(z1
√
b+ y1

√
c)(t+

√
bc)2n + (z1

√
b− y1

√
c)(t−

√
bc)2n].

Hence, we transform the equation vm = wn into the following inequal-
ity.

Lemma 2.6. [6, Lemma 11] If vm = wn, n 6= 0 then

0 < 2n log(t+
√
bc)− 2m log(s+

√
c) + log(

s
√
b±
√
c

2
√
b

) < (3.96bc)−n+1.
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Theorem 2.7. [1, p.20] For a linear form

Λ = β1 logα1 + · · ·+ βl logαl 6= 0

in logarithms of l algebraic numbers α1, α2, . . . , αl with rational coeffi-
cients β1, β2, . . . , βl, we have

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log β,

where β := max{|β1|, . . . , |βl|}, d := [Q(α1, · · · , αl) : Q] and

h′(α) =
1

d
max{h(α), | logα|, 1}

with the standard logarithmic Weil height h(α) of α.

Lemma 2.8. [7, Lemma 5] Suppose that M is a positive integer. Let
p/q be the convergent of the continued fraction expansion of κ such that
q > 6M and let ε = ‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the distance
from the nearest integer.

1. If ε > 0 then there is no solution of the inequality

(11) 0 < nκ−m+ µ < AB−n

in integers n and m with

log(Aq/ε)

logB
≤ n ≤M.

2. Let r = bµq + 1
2
c. If p − q + r = 0 then there is no solution of

inequality (11) in integers n and m with

max

{
log(3Aq)

logB
, 1

}
< n ≤M.

3. The extendibility with fundamental solution (r, 0)

3.1. The lower bound of n. To find the extendibility of D(−1)-pair
{1, F 2

2k+2 +1}, we should find which case c makes D(−1)-pair to D(−1)-
triple {1, F 2

2k+2 + 1, c}. The extendibility of D(−1)-triple {1, 2, c} is
proved by A. Dujella in [4], we may assume that k ≥ 1, that is F 2

2k+2+1 ≥
10. Using the Theorem 2.1, we obtain the case of third element belonging
to the D(−1)-triple {1, F 2

2k+2 + 1, c}.
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Lemma 3.1. Let {1, F 2
2k+2 + 1, c} is a D(−1)-triple with the funda-

mental solution (r, 0). Then the third element c > F 2
2k+2 + 1 is only

4F 4
2k+2 + 1.

Proof. As mentioned before, the form of third element c = cν is

cν =
1

4b
[(t0+s0

√
b)2(2b−1+2

√
b)2ν+(t0−s0

√
b)2(2b−1−2

√
b)2ν+2r2+4].

If the fundamental solution of Pell equation is (r, 0) then c can be ex-
pressed by

c = cν =
1

4b
[r2((2b− 1 + 2

√
b)2ν + (2b− 1− 2b

√
b)2ν) + 2r2 + 4].

Since if ν = 0 implies c = 1, we may assume that ν ≥ 1.

1. ν = 1
In the case of ν = 1, we get the form of third element c = c1 is

4F 4
2k+2 + 1,

and we easily find that 4F 4
2k+2 + 1 < 9.6(F 2

2k+2 + 1)4.
2. ν ≥ 2

In the case of ν ≥ 2, we get the lower bound of third elements c is

16F 4
2k+2(2F

2
2k+2 + 1)2,

but this lower bound is greater than 9.6(F 2
2k+2 + 1)4. Therefore,

these third elements cannot be extended to D(−1)-triple to D(−1)-
quadruple. Hence, the only possible c is

4F 4
2k+2 + 1.

The next lemma gives us the lower bound of n. This lower bound will
be used in the reduction methods.

Lemma 3.2. Let c = c1 = 4F 2
2k+2 + 1. Then if the equation vm = wn

has a solution with n ≥ 2 then

n >
√

2F 2
2k+2 − 1− 1

2
.

Proof. Using the lemma 2.3, we have the congruence equation

2F 2
2k+2(m

2 − (F 2
2k+2 + 1)n2) ≡ nF2k+2(2F

3
2k+2 + F2k+2) (mod 4c).
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Moreover, since gcd(F 2
2k+2, c) = 1, we have

2(m2 − (F 2
2k+2 + 1)n2) ≡ ±n(2F 2

2k+2 + 1) (mod c).

This means

2(F 2
2k+2+1)n2±(2F 2

2k+2+1)n−2m2 > 2(F 2
2k+2+1)n2−(2F 2

2k+2+1)n−8n2 > 0,

since 2 ≤ n ≤ m ≤ 2n. Therefore, we have

2(F 2
2k+2 + 1)n2 + (2F 2

2k+2 + 1)n− 2n2 = 2F 2
2k+2n

2 + (2F 2
2k+2 + 1)n > c.

This inequality shows that

(2F 2
2k+2 + 1)(n+

1

2
)2 −

2F 2
2k+2 + 1

4
> c.

This implies n has the lower bound

n >

√
c

2F 2
2k+2 + 1

− 1

2
>
√

2F 2
2k+2 − 1− 1

2
.

Hence, we have the desired result.

3.2. The Theorem of Baker and Wüstholz.

Lemma 3.3. If vm = wn, n 6= 0 then

0 < 2n log(t+
√
bc)−2m log(s+

√
c)+log

s
√
b± r

√
c

s
√
b

< 0.625(bc−1)−n.

Proof. Using the Lemma 2.5 with the solving the recurrences (7) and
(8), we get

vm =
s

2
[(s+

√
c)2m + (s−

√
c)2m],

wn =
s
√
b± r

√
c

2
√
b

[(t+
√
bc)2n + (t−

√
bc)2n].

Let

P = s(s+
√
c)2m, Q =

s
√
b± r

√
c√

b
(t+
√
bc)2n.

The equation vm = wn implies

P + (c− 1)P−1 = Q+
c− b
b

Q−1.

From this equation, we have

P −Q =
c− b
b

Q−1 − (C − 1)P−1 < (c− 1)(P −Q)P−1Q−1.
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Since P > c− 1 and Q > 2c ≥ 2, we have Q > P. Furthermore,

P > Q− (c− 1)P−1 > Q− 1

which implies that

Q− P
Q

< Q−1 ≤ 1

2
.

These means

0 < log
Q

P
= − log

P

Q
= − log(1− Q− P

Q
) <

Q− P
Q

+ (
Q− P
Q

)2.

From this inequlity, we have the following result in our situation.

0 < log
Q

P
<

1

Q
+

1

Q2
<

2

Q
=

2
√
b

s
√
b± r

√
c
(t+
√
bc)−2n

<
2
√
b

s
√
b− r

√
c
(2
√
bc− 1)−2n <

8F 2
2k+2 + 8

4(4F 2
2k+2 − 1)

(bc− 1)−n

<
F 2
2k+2 + 1

2(F 2
2k+2 − 1)

(bc− 1)−n <
1.25

4
(bc− 1)−n = 0.625(bc− 1)−n.

Now, we apply the theorem of Baker and Wüstholz. We consider the
equation vm = wn. By applying the theorem, we have l = 3, d = 4, B =
2m, where

α1 = (t+
√
bc)2 = 2bc− 1 + 2t

√
bc,

α2 = (s+
√
c)2 = 2c− 1 + 2s

√
c,

α3 =
s
√
b± r

√
c

s
√
b

.

Then we obtain the following equations by α1, α2, α3.

α2
1 − 2(2bc− 1)α1 + 1 = 0

α2
2 − 2(2c− 1)α2 + 1 = 0

b(c− 1)α2
3 − 2b(c− 1)α3 + c− b = 0.
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Therefore,

h′(α1) =
1

2
logα1 <

1

2
log(4bc),

h′(α2) =
1

2
logα2 <

1

2
log(4c),

h′(α3) =
1

2
log

s
√
b+ r

√
c

s
√
b

<
1

2
log 2,

and

log |Λ| ≥ −18 · 4!34(32 · 4)5
1

2
log(4bc)

1

2
log(4c)

1

2
log 2 log 24 log 2m.

Since

log 0.625(bc− 1)−n < log(bc− 1)−n+1 < (−n+ 1) log(bc),

we have

(12)
n− 1

log 4n
< 6.64 · 1014 log 4c.

1. In the case v2m = w2n, we get the inequality

2
√

2F 2
2k+2 − 1− 2 < 2.66 · 1015 log(2.12F2k+2)) log(5.66F2k+2)

from the inequality (12).
2. In the case v2m+1 = w2n+1, similarly as above, we get the inequality

2
√

2F 2
2k+2 − 1− 1 < 2.66 · 1015 log(2.12F2k+2) log(5.66F2k+2).

From these inequalities, we obtain the following results

F2k+2 < 1.76 · 1018, c < 3.84 · 1073.

Since Fk = (αk − ᾱk)/
√

5, where α = (1 +
√

5)/2 > 1.618, we have the
following inequality from Fibonacci numbers

(13) (1.618)k < (α)k = ᾱk +
√

5 · Fk.

We can find the following upper bounds

n ≤ 5.05 · 1018, k ≤ 43,

using the inequalities (12) and (13), respectively.
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3.3. The reduction method. Now dividing logarithmic inequalities
from Lemma 3.3 by logα2 leads us to the inequality

0 < nκ−m+ µ < AB−n,

where

κ =
logα1

logα2

, µ =
logα3

2 logα2

, A =
0.625

2 logα2

, B = (bc− 1).

We apply Lemma 2.8 to the logarithmic inequality with M = 1.01 · 1019

and we have to examine 2 · 43 = 86 cases(the doubling comes from the
signs ± in α3). The program was developed in PARI/GP running
with 150 digits. For the computations, if the first convergent such that
q > 6M does not satisfy the condition ε > 0 then we use the next
convergent until we find the one that satisfies the conditions. Then we
have the following results.

Table 1. Results from PARI/GP running

Sign of α3 Use the next convergent Upper bounds of n

+ sign 0 case 5

− sign 0 case 5

After few steps of reduction in all cases, we get n < 2. Therefore, we
have the following first main theorem.

Theorem 3.4. Let k be an integer. Then the system of Pellian equa-
tions

y2 − (F 2
2k+2 + 1)x2 = F 2

2k+2,

z2 − (4F 4
2k+2 + 1)x2 = 4F 4

2k+2

has only the trivial solutions (x, y, z) = (0,±F2k+2,±2F 2
2k+2), where Fk

is the k-th Fibonacci number defined by F0 = 0, F1 = 1 and Fk+2 =
Fk+1 + Fk.

Consequently, Theorem 3.4 gives

Corollary 3.5. Let k be an integer. Then the set {1, F 2
2k+2 +

1, 4F 4
2k+2 + 1} cannot be extended to a D(−1)-quadruple.
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4. The extendibility with fundamental solution (b−r,±(r−1))

4.1. The lower bound of n. In this section, we consider the ex-
tendibility of D(−1)-triple {1, F 2

2k+2 + 1, c}, where c is induced by the
fundamental solutions (b − r,±(r − 1)). The following lemma gives us
the answer for the possible cases of c.

Lemma 4.1. Let {1, F 2
2k+2 +1, c} be the D(−1)-triple with the funda-

mental solutions (b− r,±(r− 1)). Then the third element c > F 2
2k+2 + 1

is only

(4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1)2 + 1.

Proof. We already find the form of third elements c is

cν =
1

4b
[(t0+s0

√
b)2(2b−1+2

√
b)2ν+(t0−s0

√
b)2(2b−1−2

√
b)2ν+2r2+4].

If ν ≥ 2 then the lower bound of c is greater than 9.6(F 2
2k+2+1)4. Hence,

we may check the cases ν ≤ 1.

1. If ν = 0 then we have D(−1)-triple {1, F 2
2k+2 + 1, (F2k+2−1)2 + 1}.

This case is proved by B. He and A. Togbé in [11].
2. If ν = 1 with the fundamental solution (b−r,−(r−1)) then D(−1)-

triple has a third element (F2k+2 + 1)2 + 1. This case is also proved
in [11].

Lastly, if ν = 1 with the fundamental solution (b− r, (r − 1)), then the
third element c of D(−1)-triple {1, F 2

2k+2 + 1, c} is

(4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1)2 + 1.

Therefore, we have the desired result.

From the third element c, we have the following result

r = F2k+2, s = 4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1,

and

t = 4F 4
2k+2 − 4F 3

2k+2 + 5F 2
2k+2 − 3F2k+2 + 1.

Let us consider the lower bound of n. The lemma gives us the answer.

Lemma 4.2. Let c = c1 = (4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1)2 + 1. Then
if the equation vm = wn has a solution with n ≥ 2 then

n ≥
4
√
c

F2k+2

.
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Proof. Using the lemma 2.3, we have the congruence equation

(14) s((F 2
2k+2 + 1)n2 −m2) ≡ ∓ntr (mod 4c).

We assume that n ≤ 4
√
c/F2k+2. Then we have

s((F 2
2k+2 + 1)n2 −m2) <

√
cF 2

2k+2n
2 < F 2

2k+2

√
c( 4
√
c/F2k+2)

2 = c,

and since c > F2k+2
4
√
c3,

ntr < nF2k+2

√
(F 2

2k+2 − 1)c < nF 2
2k+2

√
c < F2k+2

4
√
c3 < c.

This means

(15) s((F 2
2k+2 + 1)n2 −m2) = ntr,

since m ≤ 2n. From (14), we also have

s2((F 2
2k+2 + 1)n2 −m2)2 ≡ (ntr)2 (mod 4c).

Since s2 ≡ t2 ≡ −1 (mod c), the congruence equation becomes

((F 2
2k+2 + 1)n2 −m2)2 ≡ n2r2 (mod c).

The left side of congruence equation becomes

((F 2
2k+2 + 1)n2 −m2)2 ≤ F 4

2k+2n
4 ≤ F 4

2k+2

(
4
√
c

F2k+2

)4

= c,

and the right side of congruence equation becomes

n2r2 < F 2
2k+2

(
4
√
c

F2k+2

)2

< c.

Hence, we have

(16) ((F 2
2k+2 + 1)n2 −m2)2 = n2r2.

From (15) and (16), we have t2 = s2 which is a contradiction. Therefore,
we have desired result.

4.2. The Theorem of Baker and Wüstholz.

Lemma 4.3. If vm = wn, n 6= 0 then

0 < 2n log(t+
√
bc)−2m log(s+

√
c)+log

s
√
b± r

√
c

s
√
b

< 0.028(bc−1)−n.
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Proof. The proof follows along the same line as that of Lemma 3.3.
In this case, we have

0 < log
Q

P
<

1

Q
+

1

Q2
<

2

Q
=

2
√
b

s
√
b± r

√
c
(t+
√
bc)−2n

<
2
√
b

s
√
b− r

√
c
(2
√
bc− 1)−2n <

F 2
2k+2 + 1

4F 3
2k+2 − 4F 2

2k+2 + 2F2k+2 − 1
(bc− 1)−n

<
101

3619
(bc− 1)−n < 0.028(bc− 1)−n.

By the theorem of Baker and Wüstholz with α1, α2, and α3, where
we used in Chapter 3.2, we have the equation (12), since

0.028(bc− 1)−n < (−n+ 1) log(bc).

From the inequatily (12), we have the following two inequalities.

1. In the case v2m = w2n, we get the inequality

2
√

4r − 4− 1 < 6.64 · 1014 log(2(4r3 − 4r2 + 3r)) log(256r),

where r = F2k+2.
2. In the case v2m+1 = w2n+1, similarly as above, we get the inequality

2
√

4r − 4 < 6.64 · 1014 log(2(4r3 − 4r2 + 3r)) log(324r),

where r = F2k+2.

From these two inequalities, we obtain the following results

F2k+2 < 1.55 · 1037, c < 2.22 · 10224.

Using the upper bound of c and inequality (13), we have

n ≤ 1.57 · 1019, k ≤ 87.

4.3. The reduction method. Now dividing logarithmic inequalities
from Lemma 4.3 by logα2 leads us to the inequality

0 < nκ−m+ µ < AB−n,

where

κ =
logα1

logα2

, µ =
logα3

2 logα2

, A =
0.028

2 logα2

, B = (bc− 1).

We apply Lemma 2.8 to the logarithmic inequality with M = 3.14 · 1019

and we have to examine 2 · 87 = 174 cases(the doubling comes from
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the signs ± in α3). The program was developed in PARI/GP running
with 150 digits. For the computations, if the first convergent such that
q > 6M does not satisfy the condition ε > 0 then we use the next
convergent until we find the one that satisfies the conditions. Then we
have the following results.

Table 2. Results from PARI/GP running

Sign of α3 Use the next convergent Upper bounds of n

+ sign 0 case 3

− sign 0 case 4

After few steps of reduction in all cases, we get n < 2. Therefore, we
have the following second main theorem.

Theorem 4.4. Let k be an integer and

c = (4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1)2 + 1.

Then the system of Pellian equations y2 − (F 2
2k+2 + 1)x2 = F 2

2k+2,

z2 − cx2 = (4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1)2

has only the trivial solutions

(x, y, z) = (0,±F2k+2,±4F 3
2k+2 − 4F 2

2k+2 + 3F2k+2 − 1),

where Fk is the k-th Fibonacci number defined by F0 = 0, F1 = 1 and
Fk+2 = Fk+1 + Fk.

Consequently, Theorem 4.4 gives

Corollary 4.5. The set

{1, F 2
2k+2 + 1, (4F 3

2k+2 − 4F 2
2k+2 + 3F2k+2 − 1)2 + 1}

cannot be extended to a D(−1)-quadruple.
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