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e-FUZZY FILTERS OF STONE ALMOST DISTRIBUTIVE

LATTICES

Yohannes Gedamu Wondifraw and Teferi Getachew
Alemayehu

Abstract. In this paper the concept of e-fuzzy filters is introduced
in a Stone Almost Distributive Lattice. Several properties are de-
rived on e-fuzzy filters with the help of maximal fuzzy filters. It is
proved that the set of all e-fuzzy filters forms a complete distributive
lattice.

1. Introduction

U. M. Swamy and G. C. Rao [9] introduced the notion of an Almost
Distributive Lattice (ADL). An ADL (A,∧,∨, 0) satisfies all the axioms
of distributive lattice, except possibly the commutativity of the oper-
ations ∧ and ∨. It is known that, in any ADL the commutativity of
∨ is equivalent to that of ∧ and also to the right distributivity of ∨
over ∧. U.M. Swamy, G.C. Rao, and G. Nanaji Rao [10] introduced
pseudo-complementation on almost distributive lattices. U.M. Swamy,
G.C. Rao, and G. Nanaji Rao [11] studied Stone Almost Distributive
Lattices. In addition to this N. Rafi, Ravi Kumar Bandaru and G.C.
Rao [6] studided e-filters in Stone Almost Distributive Lattices. On the
other hand, fuzzy set theory was introduced by Zadeh [15]. Next, fuzzy
groups were studied by Rosenfield [7]. Many scholars have used this idea
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to different mathematical branches such as semi-group, ring, semi-ring,
near-ring, lattice etc. For instance Yuan and Wu [14] introduced the no-
tion of fuzzy sublattice and fuzzy ideals of lattice, Swamy and Raju [8]
fuzzy ideals and congruences of lattices, Kumar [5], topologized the set
of all fuzzy prime ideals of a commutative ring with unity and stud-
ied some properties of the space, Kumar [5], studied about the space
of prime fuzzy ideals of a ring in different way and Hadji-Abadi and
Zahedi [3] extended the result of Kumar.

More recently, U. M. Swamy et al. [12] Introduced fuzzy ideals of
ADLs. In adition to this B. A. Alaba and G. M. Addis [1] studied fuzzy
congruence relations on almost distributive lattices. U. M. Swamy et
al. [13] studied L-Fuzzy Filters of Almost Distributive Lattices. B. A.
Alaba and T.G. Alemayehu [2] introduce e-fuzzy filters of MS-algebras.

In this article our aim is to present e-fuzzy filters of a Stone Almost
Distributive Lattice.

2. PRELIMINARIES

In this section, we recall basic definitions and results which will be
used in this article. For further detail on e-filters of a Stone ADL, we
refer to [6].

Definition 2.1. [9] An algebra L = (L,∨,∧, 0) of type (2, 2, 0) is
called an Almost Distributive Lattice (abbreviated as ADL), if it satisfies
the following conditions for all a, b and c ∈ L:

1. 0 ∧ a = 0,
2. a ∨ 0 = a,
3. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
4. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
5. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
6. (a ∨ b) ∧ b = b.

[9] Every nonempty set X can be regarded as an ADL as follows. Let
x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y =

{
x if x 6= x0

y ifx = x0
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.

x ∧ y =

{
x if y 6= x0

x0 ifx = x0

.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a
discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if
a = a ∧ b (or equivalently, a ∨ b = b), then ≤ is a partial ordering on L.

Definition 2.2. [9]
If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the following:

1. a ∨ b = a⇔ a ∧ b = b,
2. a ∨ b = b⇔ a ∧ b = a,
3. ∧ is associative in L,
4. a ∧ b ∧ c = b ∧ a ∧ c,
5. (a ∨ b) ∧ c = (b ∨ a) ∧ c
6. a ∧ b = 0⇔ b ∧ a = 0,
7. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
8. a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a,
9. a ≤ a ∨ b and a ∧ b ≤ b,

10. a ∧ a = a and a ∨ a = a,
11. 0 ∨ a = a and a ∧ 0 = 0,
12. If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a,

It can be observed that an ADL L satisfies almost all the properties
of a distributive lattice except the right distributivity of ∨ over ∧, com-
mutativity of ∨, commutativity of ∧. Any one of these properties make
an ADL L a distributive lattice.

As usual, an element m ∈ L is called maximal if it is a maximal
element in the partially ordered set (L,≤). That is, for any a ∈ L,m ≤
a⇒ m = a.

Theorem 2.3. [9] Let L be an ADL and m ∈ L. Then the following
are equivalent:

1. m is maximal with respect to ≤,
2. m ∨ a = m, for all a ∈ L,
3. m ∧ a = a, for all a ∈ L,
4. a ∨m is maximal, for all a ∈ L.

As in distributive lattices [9], a non-empty subset I of an ADL L is
called an ideal of L if a∨ b ∈ I and a∧ x ∈ I for any a, b ∈ I and x ∈ L.
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Also, a non-empty subset F of L is said to be a filter of L if a ∧ b ∈ F
and x∨ a ∈ F for a, b ∈ F and x ∈ L. The set I(L) of all ideals of L is a
bounded distributive lattice with least element {0} and greatest element
L under set inclusion in which, for any I, J ∈ I(L), I ∩ J is the infimum
of I and J while the supremum is given by I ∨J = {a∨ b : a ∈ I, b ∈ J}.
A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x∧ y ∈
P ⇒ x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if
it is not properly contained in any proper ideal of L. It can be observed
that every maximal ideal of L is a prime ideal. Every proper ideal of L
is contained in a maximal ideal.

For any A ⊆ L, Ann{A} = {x ∈ L : a ∧ x = 0 for all a ∈ A} is an
ideal of L. We write Ann{(a]} for Ann{a}. Then clearly Ann{(0]} = L
and Ann{L} = (0].

Definition 2.4. [6] Let L be an ADL and x ∈ L. Then define
Ann{x} = {y ∈ L : x ∧ y = 0}. Clearly, Ann{x} is an ideal in L and
hence an annihilator ideal.

Definition 2.5. [10] Let (L,∨,∧, 0) be an ADL. Then a unary op-
eration a 7→ a∗ on L is called a pseudo-complementation on L if, for any
a, b ∈ L, it satisfies the following conditions:

1. a ∧ b = 0⇒ a∗ ∧ b = b,
2. a ∧ a∗ = 0,
3. (a ∨ b)∗ = a∗ ∧ b∗,

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Here, the unary operation ∗ is called a pseudo-complementation on
L and a∗ is called a pseudo-complement of a in L. An element a of a
pseudo-complemnted ADL L is called a dense element if a∗ = 0.

Let us denote the set of all dense elements of L by D.
Now we list some results of pseudo-complementation.

Theorem 2.6. [10] Let L be an ADL and ∗ be a pseudo-complementation
on L. Then, for any a, b ∈ L, we have the following:

1. 0∗ is amaximal,
2. If a is maximal, then a∗ = 0,
3. 0∗∗ = 0,
4. a∗∗ ∧ a = a,
5. a∗∗∗ = a∗,
6. a ≤ b⇒ b∗ ≤ a∗,
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7. a∗ ∧ b∗ = b∗ ∧ a∗,
8. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

Definition 2.7. [11] Let L be an ADL and ∗ a pseudo-complementation
on L. Then L is called Stone ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗ .

Lemma 2.8. [11] Let L be a Stone ADL and a, b ∈ L. Then (a∧b)∗ =
a∗ ∨ b∗

Definition 2.9. [6] For any filter F of a Stone ADL L, define an
extenstion of F as the set F e = {x ∈ L/x∗ ∈ Ann{a} for some a ∈ F}

Definition 2.10. [6] A filter F of a Stone ADL L is called an e-filter
of L if F = F e

Remember that, for any set S a function µ : S −→ ([0, 1],∧,∨)
is called a fuzzy subset of S, where [0, 1] is a unit interval, α ∧ β =
min{α, β} and α ∨ β = max{α, β} for all α, β ∈ [0, 1].

Definition 2.11. [13] Let λ be a fuzzy subset of an ADL L. For any
α ∈ [0, 1], we denote the level subset λα, i.e

λα = {x ∈ L : α ≤ λ(x)}.

U.M. Swamy et.al [13] µ : L −→ L
′
, where L is an ADL and L

′
is

a complete lattice satisfing infinate meet distiributive law. Now in our
cases take L

′
as [0, 1].

λ is said to be a fuzzy filter of an ADL L if λα is a filter of L for all
α ∈ L.

Theorem 2.12. [13]
Let λ be a fuzzy subset of an ADL L. Then the following are equiv-

alent to each other.

1. λ is a fuzzy filter of L,
2. λ(m) = 1 for all maximal element m and λ(x ∧ y) = λ(x) ∧ λ(y),

for all x, y ∈ L,
3. λ(m) = 1 for all maximal element m and λ(x ∨ y) ≥ λ(x) ∨ λ(y)

and λ(x ∧ y) ≥ λ(x) ∧ λ(y), for all x, y ∈ L.

We define the binary operations ” + ” and ”.” on all fuzzy subsets of
an ADL L as: (µ + θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∨ b = x} and
(µ.θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∧ b = x}.
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The intersection of fuzzy filters of L is a fuzzy filter. However the
union of fuzzy filters may not be fuzzy filter. The least upper bound of a
fuzzy filters µ and θ of L is denoted as µ∨θ = ∩{σ ∈ FF (L) : µ∪θ ⊆ σ}.

If µ and θ are fuzzy filters of L, then µ.θ = µ ∨ θ and µ+ θ = µ ∩ θ

In the next sections L stands for a Stone ADL unless otherwise men-
tioned.

3. e-Fuzzy Filters of Stone Almost Distributive Lattices

In [6], N. Rafi, Ravi Kumar Bandaru and G.C. Rao introduced the
concept of e-filters in Stone ADL and studied their properties. In this
paper, we extend this concept to e-fuzzy filters of a Stone ADL. Some
basic properties of e-fuzzy filters are observed in terms of maximal fuzzy
filters. We proved that every maximal fuzzy filter of Stone ADL is always
an e-fuzzy filter and also observed that every minimal prime fuzzy filter
containing a given e-fuzzy filter is an e-fuzzy filter.

Definition 3.1. For any fuzzy filter λ of a Stone ADL L, define an
extension of λ as the fuzzy subset λe(x) = sup{λ(a) : x∗∧a = 0, a ∈ L}
for all x ∈ L.

The following Lemma reveals some basic properties of λe

Lemma 3.2. Let L be a Stone ADL. For any two fuzzy filters λ and
ν of L, the following holds true.

(1) λe is a fuzzy filter of L,
(2) λ ⊆ λe,
(3) λ ⊆ ν ⇒ λe ⊆ νe,
(4) (λ ∩ ν)e = λe ∩ νe,
(5) (λe)e = λe.

Proof. For any elements x, y, a, b ∈ L and for any maximal element
L,

(1) λe(m) = sup{λ(a) : m∗ ∧ a = 0, a ∈ L} ≥ λ(m) = 1. Hence
λe(m) = 1.
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Next,

λe(x) ∨ λe(y) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ∨ sup{λ(b) : y∗ ∧ b = 0, b ∈ L}
= sup{λ(a) ∨ λ(b) : x∗ ∧ a = 0, y∗ ∧ b = 0, a, b ∈ L}
≤ sup{λ(a ∨ b) : (x ∨ y)∗ ∧ (a ∨ b) = 0}
= λe(x ∨ y)

and

λe(x) ∧ λe(y) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ∧ sup{λ(b) : y∗ ∧ b = 0, b ∈ L}
= sup{λ(a) ∧ λ(b) : x∗ ∧ a = 0, y∗ ∧ b = 0, a, b ∈ L}
≤ sup{λ(a ∧ b) : (x ∧ y)∗ ∧ (a ∧ b) = 0, a, b ∈ L}
= λe(x ∧ y)

Thus λe is a fuzzy filter of L.
(2) λe(x) = sup{λ(a) : x∗ ∧ a = 0} ≥ λ(x). Hence λ ⊆ λe.
(3) Suppose that λ ⊆ ν, then

νe(x) = sup{ν(a) : x∗ ∧ a = 0, a ∈ L} ≥ sup{λ(a) : x∗ ∧ a = 0, a ∈
L} = λe(x).
Hence λe ⊆ νe

(4) By (3) (λ ∩ ν)e ⊆ λe ∩ νe.
Conversely,

(λe ∩ νe)(x) = λe(x) ∧ νe(x)

= sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ∧ sup{ν(b) : x∗ ∧ b = 0, b ∈ L}
= sup{λ(a) ∧ ν(b) : x∗ ∧ a = 0, x∗ ∧ b = 0, a, b ∈ L}
≤ sup{λ(a ∨ b) ∧ ν(a ∨ b) : x∗ ∧ (a ∨ b) = 0, a, b ∈ L}
= sup{(λ ∩ ν)(a ∨ b) : x∗ ∧ (a ∨ b) = 0, a, b ∈ L}
= (λ ∩ ν)e(x)

Hence (λe ∩ νe) = (λ ∩ ν)e.
(5) If x∗ ∧ a = 0 and a∗ ∧ z = 0, then a∗ ∧ x∗ = x∗ and also we have

x∗ ∧ z = a∗ ∧ x∗ ∧ z = x∗ ∧ a∗ ∧ z = x∗ ∧ 0 = 0

(λe)e(x) = sup{λe(a) : x∗ ∧ a = 0, a ∈ L}
= sup{sup{λ(z) : a∗ ∧ z = 0, z ∈ L} : x∗ ∧ a = 0, a, x ∈ L}
≤ sup{λ(z) : x∗ ∧ z = 0, z ∈ L}
= λe(x)

Clearly λe ⊆ (λe)e. Hence (λe)e = λe.

Now we define e-fuzzy filter in Stone ADL L.
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Definition 3.3. A fuzzy filter λ of a Stone ADL L is called an e-fuzzy
filter of L if λ = λe.

Theorem 3.4. λ is an e-fuzzy filter of a Stone ADL L if and only if
λα is an e-filter of L, for all α ∈ [0, 1] .

Corollary 3.5. F is an e-filter of a Stone ADL L if and only if χF
is an e-fuzzy filter of L.

Lemma 3.6. Let D be the set of all dense elements of L. Then χD is
the smallest e-fuzzy filter.

Proof. Since D is an e-fuzzy filter of L. By Corrollary 3.5 χD is an e-
fuzzy filter of L. Suppose λ is any e-fuzzy filter of L. If χD(x) = 1 . This
implies x∗ = 0. Now λ(x) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ≥ λ(m) = 1,
for any maximal element m. Since x∗∧m = 0. In this case χD(x) ≤ λ(x).
If χD(x) = 0, then χD(x) = 0 ≤ λ(x). This implies χD(x) ≤ λ(x) for all
x ∈ L. Hence χD is the smallest e-fuzzy filter of L.

In Lemma 3.2(4), we can mention that the intersection of two e-fuzzy
filters of a Stone ADL L is an e-fuzzy filter. But the union of two e-fuzzy
filters may not be an e-fuzzy filter.

Corollary 3.7. Let {λi : i ∈ Ω} be a family of e-fuzzy filters of a
Stone ADL L. Then ∩i∈Ωλi is an e-fuzzy filter of L.

We denote the class of all e-fuzzy filters of a Stone ADL L by FF e(L)

Theorem 3.8. Let L be a Stone ADL L. Then the class FF e(L) of
all e-fuzzy filters forms a complete distributive lattice with relation ⊆.

Proof. Since χD, χL ∈ FF e(L), FF e(L) 6= ∅. Clearly (FF e(L),⊆) is
a partially order set. Now for any λ, σ ∈ FF e(L), define λ ∧ σ = λ ∩ σ
and λ∪σ = (λ∨σ)e, where (λ∨σ)e(x) = sup{λ(a)∧λ(b) : x∗∧ (a∧ b) =
0, a, b ∈ L} ∀ x ∈ L. It can be easily verified that λ ∩ σ, (µ ∨ σ)e ∈
FF e(L) and λ∩σ is the greatest lower bound of λ and σ. We prove that
λ∪σ is the least upper bound of λ and σ. Since λ, σ ⊆ λ∨σ ⊆ (λ∨σ)e,
(λ ∨ σ)e is an upper bound of λ and σ. Let γ be any e-fuzzy filter of L
such that λ ⊆ γ and σ ⊆ γ.

(λ ∨ σ)e(x) = Sup{λ(a) ∧ λ(b) : x∗ ∧ (a ∧ b) = 0 ; a, b ∈ L}
≤ Sup{γ(a) ∧ γ(b) : x∗ ∧ (a ∧ b) = 0, a, b ∈ L}
= Sup{γ(a ∧ b) : x∗ ∧ (a ∧ b) = 0, a, b ∈ L}
= γe(x) = γ(x)
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Hence (λ ∨ σ)e = sup{λ, σ}. Thus (FF e(L),⊆) is a lattice. Since
χD and χL are the smallest and the greatest e-fuzzy filters of FF e(L),
(FF e(L),∩,∪, χD, χL) is a bounded lattice. By Corollary 3.8 any sub-
family of e-fuzzy filters of FF e(L) has infimum in FF e(L) and FF e(L)
has greatest element. Hence (FF e(L),∩,∪, χD, χL) is a complete bounded
lattice. For any λ, σ and θ ∈ FF e(L), we have (λ ∪ σ) ∩ (λ ∪ θ) =
(λ ∨ σ)e ∩ (λ ∨ θ)e = ((λ ∨ σ) ∩ (λ ∨ θ))e = (λ ∨ (σ ∩ θ))e = λ ∪ (σ ∩ θ).
Therefore (FF e(L),∩,∪, χD, χL) is a bounded and complete distributive
lattice.

In the following, we characterize the e-fuzzy filters

Theorem 3.9. Let λ be a fuzzy filter of a Stone ADL L. Then, the
following are equivalent.

(1) λ is an e-fuzzy filter,
(2) λ(x) = λ(x∗∗),
(3) For x, y ∈ L , x∗ = y∗ implies λ(x) = λ(y).

Proof. (1)⇒ (2). Suppose that λ is an e-fuzzy filter of L. For x, a ∈
L, λ(x) = λe(x) = sup{λ(a) : x∗∧a = 0, a ∈ L} = sup{λ(a) : x∗∗∗∧a =
0, a ∈ L} = λe(x∗∗) = λ(x∗∗).

(2) ⇒ (3). Suppose that condition (2) holds. Let x, y ∈ L, x∗ = y∗.
Then x∗∗ = y∗∗. Thus λ(x) = λ(x∗∗) = λ(y∗∗) = λ(y). Hence λ(x) =
λ(y).

(3) ⇒ (1). Suppose that condition (3) holds. λe(x) = sup{λ(a) :
x∗∧a = 0, a ∈ L} ≤ sup{λ(a) : (a∨x)∗ = x∗, a ∈ L} ≤ λ(a∨x) = λ(x).
Since x∗∧a = 0 implies x∗ = a∗∧x∗ = (a∨x)∗ and by (3) λ(x∨a) = λ(x).
This implies λe ⊆ λ. Clearly λ ⊆ λe. Hence λ is an e-filter of L.

4. Prime e-Fuzzy Filters and Maximal e-fuzzy Filters of a
Stone ADL L

In this section, we introduce prime e-fuzzy filters and maximal e-fuzzy
filters of a Stone ADL L and we discuss some properties of them.

Definition 4.1. A proper e-fuzzy filter µ in a Stone ADL L is called a
prime e-fuzzy filter if for any fuzzy filters λ and ν of L, λ∩ν ⊆ µ⇒ λ ⊆ µ
or ν ⊆ µ.
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Theorem 4.2. A proper filter F is a prime e-filter of L and α ∈ [0, 1)
if and only if the fuzzy subset given by

F 1
α(x) =

{
1 if x ∈ F
α if x /∈ F

is a prime e-fuzzy filter of L.

Proof. Suppose that a proper filter F of L is a prime e-filter of L and
α ∈ [0, 1). Clearly F 1

α is a proper fuzzy filter of L. Since (F 1
α)1 = F

and (F 1
α)α = L are e-filters of L. This implies by Theorem 3.4, F 1

α is a
proper e-fuzzy filter of L. Now we prove that F 1

α is a prime e-fuzzy filter.
Let ν and θ be any fuzzy filters of L such that ν ∩ θ ⊆ F 1

α. Suppose if
possible that ν * F 1

α and θ * F 1
α. Then there exist x, y ∈ L such that

ν(x) > F 1
α(x) and θ(y) > F 1

α(y). This indicates F 1
α(x) = F 1

α(y) = α and
so x /∈ F and y /∈ F . Since F is prime, x∨ y /∈ F and so F 1

α(x∨ y) = α.
Now, (ν ∩ θ)(x ∨ y) = ν(x ∨ y) ∧ θ(x ∨ y) ≥ ν(x) ∧ θ(y) > α ∧ α = α =
F 1
α(x∨y), which is a contradiction to our assumption ν∩θ ⊆ F 1

α. Hence
F 1
α is a prime e-fuzzy filter. Conversely, suppose that F 1

α is a prime e-
fuzzy filter. Clearly F 1

α is an e-fuzzy filter and (F 1
α)1 = F . Hence F is an

e-filter of L. Let A and B be any filters of L such that A∩B ⊆ F . Then
(A ∩ B)1

α = A1
α ∩ B1

α ⊆ F 1
α. Since F 1

α is prime, A1
α ⊆ F 1

α or B1
α ⊆ F 1

α.
This implies B ⊆ F or A ⊆ F . Hence F is a prime e-filter of L.

Theorem 4.3. A proper e-fuzzy filter λ of L is a prime e-fuzzy filter
if and only if Img(λ) = {1, α}, where α ∈ [0, 1) and the set λ∗ = {x ∈
L : λ(x) = 1} is a prime e-filter of L.

Proof. The converse part of this theorem follows from Lemma 4.2.
Suppose that λ is a prime e-fuzzy filter. Clearly 1 ∈ Im(λ). Since λ is
proper, there is x ∈ L such that λ(x) < 1. We prove that λ(x) = λ(y)
for all x, y ∈ L− λ∗. Suppose that λ(x) 6= λ(y) for some x, y ∈ L− λ∗.
Without loss of generality we can assume that λ(y) < λ(x) < 1. Define
fuzzy subsets θ and φ as follows:

θ(z) =

{
1 if z ∈ [x)

0 otherwise.

and

φ(z) =

{
1 if z ∈ λ∗
λ(x) otherwise.
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for all z ∈ L. Then it can be easily verified that both θ and φ are fuzzy
filters of L. Let z ∈ L. If z ∈ λ∗, then (θ ∩ φ)(z) ≤ 1 = µ(z). If
z ∈ [x) − λ∗, then z = x ∨ z, and we have (θ ∩ φ)(z) = θ(z) ∧ φ(z) =
1 ∧ λ(x) = λ(x) ≤ λ(z).
Also if z /∈ [x), then θ(z) = 0, so that (θ ∩ φ)(z) = 0 ≤ λ(z). Therefore
for all x ∈ L, (θ ∩ φ)(x) ⊆ λ(x). But we have θ(x) = 1 > λ(x)
and φ(y) = λ(x) > λ(y). This implies φ * λ and θ * λ, which is
a contradiction. Thus λ(x) = λ(y) for all x, y ∈ L − λ∗ and hence
Im(λ) = {1, α} for some α ∈ [0, 1). Let P = {x ∈ L : λ(x) = 1}. Since
λ is proper, we get that P is a proper e-filter of L such that

λ(z) =

{
1 if z ∈ P
α if z /∈ P.

for α 6= 1. Hence by Lemma 4.2, P = λ∗.

Theorem 4.4. If λ is a prime e-fuzzy filter of L, then λ(x∨y) = λ(x)
or λ(x ∨ y) = λ(y) for all x, y ∈ L.

Proof. Suppose that λ is a prime e-filter of L, then there exists a
prime e-filter F of L and α ∈ [0, 1) such that

λ(x) =

{
1 if x ∈ F
α if x /∈ F

for all x ∈ L. If x, y ∈ F , then x ∨ y ∈ F and so 1 = λ(x) = λ(y) =
λ(x∨y). If x ∈ F and y /∈ F , then x∨y ∈ F and so 1 = λ(x) = λ(x∨y).
If x /∈ F and y /∈ F , then x∨ y /∈ F and so α = λ(x) = λ(y) = λ(x∨ y).
Hence the Theorem holds.

Definition 4.5. A proper fuzzy filter λ in a Stone ADL L is called
a maximal fuzzy filter if Img(λ) = {1, α}, where α ∈ [0, 1) and the set
λ∗ is a maximal filter of L.

Definition 4.6. A proper e-fuzzy filter λ in a Stone ADL L is called
a maximal e-fuzzy filter if Img(λ) = {1, α}, where α ∈ [0, 1) and the set
λ∗ is a maximal e-filter of L.

Corollary 4.7. Any maximal e-fuzzy filter of L is a prime e-fuzzy
filter.

Proof. Let λ be a maximal e-fuzzy filter of L. Then Im(λ) = {1, α},
and λ∗ is a maximal e-filter of L. Since every maximal e-filter of L is a
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prime e-filter of L. This implies λ∗ is a prime e-filter of L. Hence λ is a
prime e-fuzzy filter of L.

Theorem 4.8. Every maximal fuzzy filter of a Stone ADL L is an
e-fuzzy filter.

Corollary 4.9. Every maximal fuzzy filter of a Stone ADL L is
prime e-fuzzy filter.

Theorem 4.10. If λ is minimal in the class of all prime fuzzy filters
L containing a given e-fuzzy filter, then λ is an e-fuzzy filter of L.

Proof. Suppose that λ is minimal in the class of all prime fuzzy filters
containing an e-fuzzy filter θ of L. We prove that λ is an e-fuzzy filter.
Since λ is a prime fuzzy filter of L, there exists a prime filter P of L such

λ(z) =

{
1 if z ∈ P
α otherwise.

for some α ∈ [0, 1). Suppose that λ is not an e-fuzzy filter of L, then
there exist x, y ∈ L, x∗ = y∗ such that λ(x) 6= λ(y). Without loss of
generality, assume λ(x) = 1 and λ(y) = α. Consider a fuzzy ideal φ of
L defined by

φ(z) =

{
1 if z ∈ (L− P ) ∨ (x ∨ y]

α otherwise.

Then θ ∩ φ ≤ α. Otherwise there exists a ∈ L such that φ(a) = 1 and
θ(a) > α. This implies a ∈ (L− P ) ∨ (x ∨ y].

=⇒ a = r ∨ s for some r ∈ L− P and s ∈ (x ∨ y]

=⇒ a = r ∨ s = r ∨ ((x ∨ y) ∧ s) = (r ∨ x ∨ y) ∧ (r ∨ s) ≤ r ∨ x ∨ y
As x∗ = y∗ implies (r ∨ x ∨ y)∗ = (r ∨ y)∗. Since θ is an e-fuzzy filter of
L, α < θ(a) = θ(r∨ s) ≤ θ(r∨x∨ y) = θ(r∨ y) ≤ λ(r∨ y). This implies
1 = λ(r ∨ y).

Hence λ(y) = 1 or λ(r) = 1 , which is a contradiction. Thus θ∩φ ≤ α.
This implies there exists a prime fuzzy filter η such that η ∩ φ ≤ α

and θ ⊆ η. Clearly x∨ y ∈ (L− P )∨ (x∨ y]. This implies φ(x∨ y) = 1.
Since φ ∩ η ≤ α, η(x ∨ y) ≤ α < λ(x ∨ y) = 1. This implies λ * η.
This indicates λ is not minimal in the class of all prime fuzzy filters
containing a given e-fuzzy filter, which is a contradiction. Therefore, λ
is an e-fuzzy filter.
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Theorem 4.11. Let λ be a prime fuzzy filter of a Stone ADL L, and
λ(0) = 0. Then a fuzzy subset `(λ) of L defined as `(λ)(x) = λ

′
(x∗) ∀x ∈

L is an e-fuzzy filter of L.

Proof. `(λ)(m) = λ
′
(m∗) = 1− λ(m∗) = 1− λ(0) = 1.

`(λ)(x ∧ y) = λ
′
((x ∧ y)∗) = 1− λ(x∗ ∨ y∗)

= (1− λ(x∗)) ∧ (1− λ(y∗))

= λ
′
(x∗) ∧ λ′

(y∗) = `(λ)(x) ∧ `(λ)(y)

This implies `(λ) is a fuzzy filter of L. Next we prove that `(λ) is an
e-fuzzy filter.

`(λ)e(x) = sup{`(λ)(a) : x∗ ∧ a = 0, a ∈ L}
= sup{`(λ)(a) : a∗ ∧ x∗ = x∗, a ∈ L}
= sup{1− λ(a∗) : a∗ ∧ x∗ = x∗, a ∈ L}
≤ 1− λ(x∗), since x∗ = a∗ ∧ x∗ ≤ a∗ and λ is an isotone

= `(λ)(x)

Clearly `(λ) ⊆ `(λ)e

Hence `(λ) is an e-fuzzy filter of L.

Corollary 4.12. Let λ be a maximal fuzzy filter of Stone ADL L
and λ(0) = 0. Then `(λ) is an e-fuzzy filter of L.

Definition 4.13. [6] An ADL L is said to be a disjunctive ADL if
for any x, y ∈ L, Ann{x} = Ann{y} implies x = y.

Theorem 4.14. Let L be a Stone ADL. If L is a disjunctive ADL,
then every fuzzy filter of L is an e-fuzzy filter.

Proof. Suppose that λ is a fuzzy filter of disjunctive ADL L. Clearly
λ ⊆ λe

Conversely, λe(x) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L}
≤ sup{λ(a) : (a ∨ x)∗ = x∗, a ∈ L}
≤ λ(a ∨ x) = λ(x), since L is disjunctive ADL

and λ is an istone.

This implies λ = λe. Hence every fuzzy filter is an e-fuzzy filter.

Theorem 4.15. For any fuzzy filter λ of a Stone ADL L, a fuzzy
subset λ∗(x) = sup{λ(b) : x∗ ∧ b = 0 , b ∈ L} ∀ x ∈ L is an e-fuzzy filter.
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Proof. For any x, y ∈ L,

λ∗(1) = sup{λ(b) : 1∗ ∧ b = 0, b ∈ L} ≥ λ(1) = 1

λ∗(x) ∧ λ∗(y) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ∧ sup{λ(b) : y∗ ∧ b = 0, b ∈ L}
= sup{λ(a) ∧ λ(b) : x∗ ∧ a = 0, y∗ ∧ b = 0, a, b ∈ L}
≤ sup{λ(a ∧ b) : (x ∧ y)∗ ∧ a ∧ b = 0, a, b ∈ L}
= λ∗(x ∧ y)

λ∗(x) ∨ λ∗(y) = sup{λ(a) : x∗ ∧ a = 0, a ∈ L} ∨ sup{λ(b) : y∗ ∧ b = 0, b ∈ L}
= sup{λ(a) ∨ λ(b) : x∗ ∧ a = 0, y∗ ∧ b = 0, a, b ∈ L}
≤ sup{λ(a ∨ b) : (x ∨ y)∗ ∧ a ∨ b = 0, a, b ∈ L}
= λ∗(x ∨ y)

This implies λ∗ is a fuzzy filter of L. Next we prove that λ is an e-fuzzy
filter. Now

λ∗(x∗∗) = sup{λ(c) : x∗∗∗∧c = 0, c ∈ L} = sup{λ(c) : x∗∧c = 0, c ∈ L}
= λ∗(x). Therefore λ∗ is an e-fuzzy filter of L.
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