ON THE GENERALIZED BOUNDARY
AND THICKNESS

Buhyeon Kang

ABSTRACT. We introduced the concepts of the generalized accumulation points and the generalized density of a subset of the Euclidean space in [1] and [2]. Using those concepts, we introduce the concepts of the generalized closure, the generalized interior, the generalized exterior and the generalized boundary of a subset and investigate some properties of these sets. The generalized boundary of a subset is closely related to the classical boundary. Finally, we also introduce and study a concept of the thickness of a subset.

1. Introduction

In this section, we introduce a concept of the generalized closure of a set and study some properties of the generalized dense subset which we need later. Throughout this paper, \(\epsilon_0 \geq 0 \) denotes any, but fixed, non-negative real number. We denote the open ball, the closed ball and the sphere with radius \(\epsilon \) and center at \(\alpha \) in the space \(R^m \) by \(B(\alpha, \epsilon) = \{ x \in R^m : \|x - \alpha\| < \epsilon \} \), \(\overline{B}(\alpha, \epsilon) = \{ x \in R^m : \|x - \alpha\| \leq \epsilon \} \) and \(S(\alpha, \epsilon) = \{ x \in R^m : \|x - \alpha\| = \epsilon \} \), respectively.

Definition 1.1. Let \(S \) be a subset of \(R^m \). A point \(a \in R^m \) is an \(\epsilon_0 \)–accumulation point of the subset \(S \) if and only if \(B(a, \epsilon) \cap (S - \{a\}) \neq \emptyset \) for all \(\epsilon > \epsilon_0 \). And a point \(a \in S \) is an \(\epsilon_0 \)–isolated point of \(S \) if and only if \(B(a, \epsilon) \cap (S - \{a\}) = \emptyset \) for some positive number \(\epsilon_1 > \epsilon_0 \).
Definition 1.2. For a subset S of \mathbb{R}^m, we define the ϵ_0-derived set of S as the set of all the ϵ_0-accumulation points of S and denote it by $S'_{(\epsilon_0)}$.

Definition 1.3. Let S be a subset of \mathbb{R}^m. The ϵ_0-closure of S is defined by $\overline{S}_{(\epsilon_0)} = Cl_{\epsilon_0}(S) = S'_{(\epsilon_0)} \cup S$.

Definition 1.4. Let E be any non-empty and open subset of \mathbb{R}^m and $\epsilon_0 \geq 0$. And let a subset D of E be given. We define that D is an ϵ_0-dense subset of E in E if and only if $E \subseteq \overline{D}_{(\epsilon_0)}$. In this case, we say that D is ϵ_0-dense in E.

Definition 1.5. Let E be an open non-empty subset of \mathbb{R}^m. And let D be an ϵ_0-dense subset of E in E. An element $a \in D$ is called a point of the ϵ_0-dense ace of D in E if and only if $D - \{a\}$ is not ϵ_0-dense in E.

Lemma 1.6. Let E be an open subset of \mathbb{R}^m and D be a non-empty subset of E. Suppose that $E \subseteq \bigcup_{b \in D} B(b, \epsilon_0)$. Then D is ϵ_0-dense in E.

Proof. See the proof of the lemma 2.10 in [1].

Lemma 1.7. Let D be a non-empty subset of an open subset E of \mathbb{R}^m and $\overline{D} = D'_{(0)} \cup D$. Then D is ϵ_0-dense in E if and only if $E \subseteq \bigcup_{b \in \overline{D}} B(b, \epsilon_0)$.

Proof. See the proof of the theorem 2.11 in [1].

2. The generalized interior and boundary

In this section, we investigate about the concepts of the ϵ_0-interior, the ϵ_0-exterior and the ϵ_0-boundary of subsets in \mathbb{R}^m and research the shapes of these sets. Throughout this section, $\epsilon_0 \geq 0$ denotes any, but fixed, non-negative real number unless otherwise stated.

Definition 2.1. Let S be a subset of \mathbb{R}^m. A point x is called the ϵ_0-interior point of S if and only if there is a positive real number $\epsilon_1 > \epsilon_0$ such that $x \in B(x, \epsilon_1) \subseteq S$. Let’s denote the set of all the ϵ_0-interior points of S in \mathbb{R}^m by $Int_{\epsilon_0}(S)$ or $S'_{(\epsilon_0)}$.
DEFINITION 2.2. Let S be a subset of \mathbb{R}^m. A point x is called the ϵ_0-boundary point of S if and only if $B(x, \epsilon_1) \cap S \neq \emptyset$ and $B(x, \epsilon_1) \cap S^C \neq \emptyset$ for each positive real number $\epsilon_1 > \epsilon_0$. Let’s denote the set of all the ϵ_0-boundary points of S in \mathbb{R}^m by $Bd_{\epsilon_0}(S)$ or $\partial_\epsilon S$.

DEFINITION 2.3. Let S be a subset of \mathbb{R}^m. A point x is called the ϵ_0-exterior point of S if and only if x is an ϵ_0-interior point of $S^C = \mathbb{R}^m - S$. Let’s denote the set of all the ϵ_0-exterior points of S in \mathbb{R}^m by $Ext_{\epsilon_0}(S)$.

REMARK 2.4. The union $\mathbb{R}^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$ is the mutually disjoint one, $S^o_\circ = S^o$ and $Int_{\epsilon_0}(S) \subseteq Int_0(S) = S^o$ for all $\epsilon_0 \geq 0$.

LEMMA 2.5. Let S be a subset of \mathbb{R}^m and suppose that $\epsilon_0 \geq 0$. Then $Int_{\epsilon_0}(S)$ and $Ext_{\epsilon_0}(S)$ are open subsets of \mathbb{R}^m. Hence $Bd_{\epsilon_0}(S)$ is closed in \mathbb{R}^m.

Proof. Let any element $x \in Int_{\epsilon_0}(S)$ be given. Then there is a positive real number $\epsilon_1 > \epsilon_0$ such that $x \in B(x, \epsilon_1) \subseteq S$. Consider the set $B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0))$. For any point $y \in B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0))$, we have, for any point $z \in B(y, \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0))$,
\[
\|x - z\| \leq \|x - y\| + \|y - z\| \\
< \frac{1}{3}(\epsilon_1 - \epsilon_0) + \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0) \\
< \epsilon_0 + \epsilon_1 - \epsilon_0 = \epsilon_1.
\]
Hence we have $B(y, \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0)) \subseteq B(x, \epsilon_1) \subseteq S$. Thus we have $y \in Int_{\epsilon_0}(S)$ since $\epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0) > \epsilon_0$. Therefore, we have
\[
x \in B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0)) \subseteq Int_{\epsilon_0}(S).
\]
This implies that $Int_{\epsilon_0}(S)$ is open. And $Ext_{\epsilon_0}(S)$ is also open since it is the ϵ_0-interior of S^C. Since $\mathbb{R}^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$ is the disjoint union, $Bd_{\epsilon_0}(S) = \mathbb{R}^m - \{Int_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)\}$ is closed in \mathbb{R}^m.

LEMMA 2.6. Let S be a subset of \mathbb{R}^m and suppose that $\epsilon_0 \geq 0$. Then we have $S'_{(\epsilon_0)} \subseteq Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$.

Proof. Let any element $x \in S'_{(\epsilon_0)}$ be given. Since $\mathbb{R}^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$ is a disjoint union, we need only to show that $x \notin$
Thus we need only to show that $x \in \text{Ext}_{\epsilon_0}(S)$. Then there is $\epsilon_1 > \epsilon_0$ such that $x \in B(x, \epsilon_1) \subseteq S^C$. Hence $B(x, \epsilon_1) \cap S = \emptyset$. This is a contradiction since $x \in S''_{(\epsilon_0)}$.

Theorem 2.7. Let S be a subset of R^m and suppose that $\epsilon_0 \geq 0$. Then $\overline{S}_{(\epsilon_0)} = \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S)$.

Proof. Since $R^m = \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S) \cup \text{Ext}_{\epsilon_0}(S)$ is the disjoint union and S is disjoint from $\text{Ext}_{\epsilon_0}(S)$, we have $S \subseteq \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S)$. Hence, by lemma 2.6, we have

$$\overline{S}_{(\epsilon_0)} = S \cup S'_{(\epsilon_0)} \subseteq \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S).$$

In order to prove the equality, let any element $x \in \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S)$ be given. If $x \in S$ then we are done. Suppose that $x \notin S$. Then $x \notin \text{Int}_{\epsilon_0}(S)$. Thus we have $x \in \text{Bd}_{\epsilon_0}(S)$. Hence we have

$$\forall \epsilon_1 > \epsilon_0, B(x, \epsilon_1) \cap S \neq \emptyset \text{ and } B(x, \epsilon_1) \cap S^C \neq \emptyset.$$

Thus we have $\exists y_{\epsilon_1} \in S$ s.t. $y_{\epsilon_1} \in B(x, \epsilon_1)$. Since $y_{\epsilon_1} \neq x$, we have

$$\forall \epsilon_1 > \epsilon_0, y_{\epsilon_1} \in B(x, \epsilon_1) \cap (S - \{x\}) \neq \emptyset.$$

This implies that $x \in S'_{(\epsilon_0)}$ which completes the proof.

Corollary 2.8. Let S be a subset of R^m and suppose that $\epsilon_0 \geq 0$. Then

$$\overline{S}_{(\epsilon_0)} = \left\{ \left(S^C \right)_{(\epsilon_0)} \right\}^C.$$

Proof. Since $R^m = \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S) \cup \text{Ext}_{\epsilon_0}(S)$ is the disjoint union and $\overline{S}_{(\epsilon_0)} = \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S)$, the union of the equation $R^m = \overline{S}_{(\epsilon_0)} \cup \text{Ext}_{\epsilon_0}(S)$ is the disjoint one. Hence we have $\{ \overline{S}_{(\epsilon_0)} \}^C = \text{Ext}_{\epsilon_0}(S) = \{ S^C \}''_{(\epsilon_0)}$. Thus we have $\overline{S}_{(\epsilon_0)} = \left\{ \left(S^C \right)_{(\epsilon_0)} \right\}^C$.

Theorem 2.9. Let S be a subset of R^m and suppose that $\epsilon_0 \geq 0$. Then $R^m - \overline{S}_{(\epsilon_0)} = \text{Int}_{\epsilon_0}(S)$, i.e., $\overline{S^C}_{(\epsilon_0)} = \text{Int}_{\epsilon_0}(S)$.

Proof. By the definition of the ϵ_0–closure of the set S^C, we have $\overline{S^C}_{(\epsilon_0)} = [S^C]''_{(\epsilon_0)} \cup S^C$. Hence we have $R^m - \overline{S^C}_{(\epsilon_0)} = \{ [S^C]''_{(\epsilon_0)} \}^C \cap S$. Thus we need only to show that $\text{Int}_{\epsilon_0}(S) = \{ [S^C]''_{(\epsilon_0)} \}^C \cap S$. Let any
element \(x \in \text{Int}_{\epsilon_0}(S) \) be given. Then we have

\[\exists \epsilon_1 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_1) \subseteq S \]

\[\Rightarrow B(x, \epsilon_1) \cap S^C = \emptyset \text{ and } x \in S \]

\[\Rightarrow x \notin [S^C]^{(\epsilon_0)} \text{ and } x \in S \]

\[\Rightarrow x \in \{[S^C]^{(\epsilon_0)} \}^C \cap S. \]

Conversely, let any element \(x \in \{[S^C]^{(\epsilon_0)} \}^C \cap S \) be given. Since \(x \in S \) is not a member of \([S^C]^{(\epsilon_0)}\), we have

\[\exists \epsilon_1 > \epsilon_0 \text{ s.t. } B(x, \epsilon_1) \cap (S^C - \{x\}) = \emptyset. \]

Since \(x \in S \) and \(S^C - \{x\} = S^C \), we also have \(B(x, \epsilon_1) \cap S^C = \emptyset \). Thus we have \(x \in B(x, \epsilon_1) \subseteq S \). Therefore, we have \(x \in \text{Int}_{\epsilon_0}(S) \) which completes the proof.

Theorem 2.10. (Representation) Let \(S \) be a subset of \(\mathbb{R}^m \) and suppose that \(\epsilon_0 \geq 0 \). Then we have

\[\text{Bd}_{\epsilon_0}(S) = \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0). \]

Moreover, if \(\epsilon_0 > 0 \) then \(\partial S \) is an \(\epsilon_0 \)-dense subset of the interior of the subset \(\text{Bd}_{\epsilon_0}(S) \).

Proof. Let \(x \in \partial S \) and any element \(y \in \overline{B}(x, \epsilon_0) \) be given. For each positive real number \(\epsilon > \epsilon_0 \), we have \(x \in B(y, \epsilon) \). Hence \(x \in B(x, \epsilon - \epsilon_0) \subseteq B(y, \epsilon) \). Since \(x \in \partial S \),

\[B(x, \epsilon - \epsilon_0) \cap S \neq \emptyset \text{ and } B(x, \epsilon - \epsilon_0) \cap S^C \neq \emptyset. \]

Thus we have

\[B(y, \epsilon) \cap S \neq \emptyset \text{ and } B(y, \epsilon) \cap S^C \neq \emptyset. \]

Hence we have \(y \in \text{Bd}_{\epsilon_0}(S) \). Thus we have \(\overline{B}(x, \epsilon_0) \subseteq \text{Bd}_{\epsilon_0}(S) \) for all elements \(x \in \partial S \). Therefore, we have \(\bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0) \subseteq \text{Bd}_{\epsilon_0}(S) \). Conversely, let any element \(y \in \text{Bd}_{\epsilon_0}(S) \) be given. For each natural number \(n \), we have

\[B(y, \epsilon_0 + \frac{1}{n}) \cap S \neq \emptyset \text{ and } B(y, \epsilon_0 + \frac{1}{n}) \cap S^C \neq \emptyset. \]

Hence there are two sequences \(\{w_n\}, \{z_n\} \) in \(\mathbb{R}^m \) such that \(\{w_n\} \subseteq S \), \(\{z_n\} \subseteq S^C \) and \(w_n, z_n \in B(y, \epsilon_0 + \frac{1}{n}) \) for each natural number \(n \). Since they are bounded, we may assume by using their subsequences that \(\lim_{n \to \infty} w_n = w_0 \) and \(\lim_{n \to \infty} z_n = z_0 \) for some elements \(w_0 \in S \) and \(z_0 \in S^C \).
Note that $\partial S = \partial S^C$. If $w_0 \in \partial S$ or $z_0 \in \partial S$ then we are done since $y \in \overline{B}(w_0, \epsilon_0)$ with $w_0 \in \partial S$ or $y \in \overline{B}(z_0, \epsilon_0)$ with $z_0 \in \partial S$. Now suppose that $w_0 \notin \partial S$ and $z_0 \notin \partial S$. Then we must have $w_0 \in \text{Int}(S)$ and $z_0 \in \text{Ext}(S)$. Now consider the line segment $\overline{w_0z_0}$ joining the points w_0 and z_0. We have $\overline{w_0z_0} \cap \partial S \neq \emptyset$ since $\overline{w_0z_0}$ is connected. Choosing an element $x_0 \in \overline{w_0z_0} \cap \partial S$, we have $x_0 = t_0w_0 + (1 - t_0)z_0$ for some real number $0 < t_0 < 1$. Thus we have

$$
\|y - x_0\| = \|t_0y + (1 - t_0)y - \{t_0w_0 + (1 - t_0)z_0\}\|
\leq t_0\|y - w_0\| + (1 - t_0)\|y - z_0\|
\leq t_0\epsilon_0 + (1 - t_0)\epsilon_0 = \epsilon_0.
$$

Hence $y \in \overline{B}(x_0, \epsilon_0) \subseteq \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0)$. Moreover, if $\epsilon_0 > 0$ then ∂S is a subset of the interior of $\text{Bd}_{\epsilon_0}(S)$. Thus ∂S is an ϵ_0-dense subset of the interior of the subset $\text{Bd}_{\epsilon_0}(S)$ by the lemma 1.6. \qed

THEOREM 2.11. (Core) Let S be a subset of \mathbb{R}^m and suppose that $\epsilon_0 \geq 0$. Then

$$
\text{Int}_{\epsilon_0}(S) = S - \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0).
$$

Proof. By the theorem just above, we need only to show that $\text{Int}_{\epsilon_0}(S) = S - \text{Bd}_{\epsilon_0}(S)$. Let any element $x \in S - \text{Bd}_{\epsilon_0}(S)$ be given. Then $x \in S$ and $x \notin \text{Bd}_{\epsilon_0}(S)$. Since $\mathbb{R}^m = \text{Int}_{\epsilon_0}(S) \cup \text{Bd}_{\epsilon_0}(S) \cup \text{Ext}_{\epsilon_0}(S)$ is the disjoint union, we must have $x \in \text{Int}_{\epsilon_0}(S)$. Conversely, let any element $x \in \text{Int}_{\epsilon_0}(S)$ be given. Then we clearly have $x \in S$, $x \notin \text{Ext}_{\epsilon_0}(S)$ and $x \notin \text{Bd}_{\epsilon_0}(S)$. Thus we have $x \in S - \text{Bd}_{\epsilon_0}(S)$. \qed

LEMMA 2.12. A subset F of \mathbb{R}^m is the boundary of some open subset in \mathbb{R}^m if and only if F is closed and nowhere dense.

Proof. First, suppose that F is the boundary of some open subset S in \mathbb{R}^m. Then it is clear that F is closed. Since the interior S of the set S is disjoint from the boundary F of S, we have $S \cap F = \emptyset$. If some point $x \in F$ is an interior point of F then there is a positive real number $\epsilon_1 > 0$ such that $x \in B(x, \epsilon_1) \subseteq F$. Since $S \cap F = \emptyset$, this implies that $B(x, \epsilon_1) \cap S = \emptyset$. Thus we have $x \in B(x, \epsilon_1) \subseteq S^C$. This implies that $x \in \text{Ext}(S)$. This is a contradiction since the boundary is disjoint from the exterior. This contradiction implies that F is nowhere dense. Now suppose that F is closed and nowhere dense. Take $S = F^C$. Then S is an open subset of \mathbb{R}^m. We need only to prove that $F = \partial F^C$. First, we have $\partial F^C \cap F^C = \emptyset$ since F^C is open. Hence we have $\partial F^C \subseteq F$. Next,
let any element \(x \in F \) be given. Then \(B(x, \epsilon) \cap F \neq \emptyset \) for all positive real number \(\epsilon > 0 \) since this intersection contains the element \(x \). Moreover, the open ball \(B(x, \epsilon) \) cannot be a subset of \(F \) for all positive real number \(\epsilon > 0 \) since \(F \) is nowhere dense. Thus we also have \(B(x, \epsilon) \cap F^c \neq \emptyset \) for all positive real number \(\epsilon > 0 \). Hence we have \(x \in \partial F^c = \partial S \). Thus \(F = \partial S \).

Corollary 2.13. Let \(S \) be any subset of \(R^m \). Then \(\partial S \) is the boundary of some open subset of \(R^m \).

Proof. Let \(S \) be any subset of \(R^m \). Since \(S^c \) is open, \(\partial S^c \) is nowhere dense by the lemma just above. But we have \(\partial S = \partial S^c \). Hence we have \(\{ \partial S \}^o = \{ \partial S^c \}^o = \emptyset \).

Theorem 2.14. Let \(F \) be a non-empty subset of \(R^m \) and \(\epsilon_0 \geq 0 \). Then \(F \) is the \(\epsilon_0 \)-boundary of some open subset of \(R^m \) if and only if \(F = \bigcup_{x \in S} B(x, \epsilon_0) \) for some closed and nowhere dense subset \(S \) of \(R^m \).

Proof. First, suppose that \(F \) is the \(\epsilon_0 \)-boundary of some open subset \(G \) of \(R^m \). Then the boundary \(S = \partial G \) of \(G \) is closed and nowhere dense subset of \(R^m \) by the lemma just above. Moreover, we have \(F = \bigcup_{x \in S} B(x, \epsilon_0) \) by the theorem 2.10. Hence we have \(F = \bigcup_{x \in S} B(x, \epsilon_0) \). Conversely, suppose that \(F = \bigcup_{x \in S} B(x, \epsilon_0) \) for some closed and nowhere dense subset \(S \) of \(R^m \). Then \(S \) is the boundary \(\partial G \) of some open subset \(G \) of \(R^m \) by the lemma just above. The \(\epsilon_0 \)-boundary of this open subset \(G \) is given by \(\partial S = \bigcup_{x \in S} B(x, \epsilon_0) \) by the theorem 2.10. Thus \(F \) is the \(\epsilon_0 \)-boundary of the open subset \(G \).

Lemma 2.15. Let \(S, T \) be any subsets of \(R^m \) and suppose that \(\epsilon_0 \geq 0 \). Then

(1) \(\text{Int}_{\epsilon_0}(S \cap T) = \text{Int}_{\epsilon_0}(S) \cap \text{Int}_{\epsilon_0}(T) \).

(2) \(\text{Ext}_{\epsilon_0}(S \cup T) = \text{Ext}_{\epsilon_0}(S) \cap \text{Ext}_{\epsilon_0}(T) \).

Proof. (1) Since \(S \cap T \) is a subset of \(S \) and \(T \), we have \(\text{Int}_{\epsilon_0}(S \cap T) \subseteq \text{Int}_{\epsilon_0}(S) \cap \text{Int}_{\epsilon_0}(T) \). Conversely, if \(x \in \text{Int}_{\epsilon_0}(S) \cap \text{Int}_{\epsilon_0}(T) \) is any element then we have \(\exists \epsilon_1 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_1) \subseteq S \) and \(\exists \epsilon_2 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_2) \subseteq T \).
Hence we have the statement
\[\exists \epsilon_3 = \min\{\epsilon_1, \epsilon_2\} > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_3) \subseteq S \cap T \]
which implies that \(x \in \text{Int}_{\epsilon_0}(S \cap T) \). (2) By (1), we have
\[\text{Int}_{\epsilon_0}(S^C \cap T^C) = \text{Int}_{\epsilon_0}(S^C) \cap \text{Int}_{\epsilon_0}(T^C). \]
Since \(\text{Int}_{\epsilon_0}(S^C) = \text{Ext}_{\epsilon_0}(S) \), we have the desired result \(\text{Ext}_{\epsilon_0}(S \cup T) = \text{Ext}_{\epsilon_0}(S) \cap \text{Ext}_{\epsilon_0}(T) \).

Note that \(\text{Int}_{\epsilon_0}(S) \cup \text{Int}_{\epsilon_0}(T) \subseteq \text{Int}_{\epsilon_0}(S \cup T) \) in general.

Theorem 2.16. Let \(S, T \) be any subsets of \(\mathbb{R}^m \) and suppose that \(\epsilon_0 \geq 0 \). Then \(\overline{\text{Cl}_{\epsilon_0}(S \cup T)} = \overline{\text{Cl}_{\epsilon_0}(S)} \cup \overline{\text{Cl}_{\epsilon_0}(T)} \).

Proof. By the corollary 2.8 and the lemma 2.15, we have
\[(S \cup T)_{(\epsilon_0)} = [((S \cup T)^C)_{(\epsilon_0)}]^C \]
\[= [((S^C \cap T^C))_{(\epsilon_0)}]^C \]
\[= ((S^C)_{(\epsilon_0)} \cap (T^C)_{(\epsilon_0)})^C \]
\[= ((S^C)_{(\epsilon_0)})^C \cup ((T^C)_{(\epsilon_0)})^C \]
\[= \overline{S(\epsilon_0)} \cup \overline{T(\epsilon_0)} \]
which completes the proof. \(\square \)

3. Thickness

By the corollary 2.13, we have \(\{\partial S\}_o = \emptyset \) for all subsets of \(\mathbb{R}^m \). But the similar relation \(\{\partial_{\epsilon_0} S\}_{(\epsilon_0)} = \emptyset \) is not true in general if \(\epsilon_0 \neq 0 \). For if \(S = \{A, B, C\} \) is the vertices of the equilateral triangle in \(\mathbb{R}^2 \), then we have \(\frac{A+B+C}{3} \in \{\partial_{\epsilon_0} S\}_{(\epsilon_0)} \) with \(\epsilon_0 = \|A - B\| \). This leads us to the following concept of the thickness.

Definition 3.1. Let \(S \) be a non-empty subset of \(\mathbb{R}^m \) and \(\epsilon_0 \geq 0 \). Then \(S \) is said to be \(\epsilon_0 \)--thick at a point \(p \in S \) if and only if \(p \in \text{Int}_{\epsilon_0}(S) \). In this case, we call that \(p \) is an \(\epsilon_0 \)--thick point or spot of \(S \).

Note that \(\text{Int}_{\epsilon_0}(S) \) is the set of all the \(\epsilon_0 \)--thick points of \(S \). We call the closure \(\overline{\text{Int}_{\epsilon_0}(S)} \) the \(\epsilon_0 \)--core of \(S \). In accordance to the theorem 2.11, the \(\epsilon_0 \)--core of \(S \) is the closure of the set \(\text{Int}_{\epsilon_0}(S) = S - \bigcup_{x \in \partial S} B(x, \epsilon_0) \).

Note also that if \(S \) is \(\epsilon_0 \)--thick at a point \(p \in S \) then \(S \) is \(\epsilon \)--thick at a point \(p \in S \) for all \(0 < \epsilon < \epsilon_1 \) for some \(\epsilon_1 \) with \(\epsilon_0 < \epsilon_1 \).
DEFINITION 3.2. Let S be a non-empty subset of R^m and $\epsilon_0 \geq 0$. Then S is said to be not ϵ_0—thick anywhere or nowhere ϵ_0—thick if and only if $Int_{\epsilon_0}(S) = \emptyset$.

THEOREM 3.3. Let S be any subsets of R^m and suppose that $\epsilon_0 \geq 0$. If $Bd_{\epsilon_0}(S)$ is nowhere ϵ_0—thick then $Bd(S)$ is closed and nowhere dense, but not conversely.

Proof. The boundary $Bd(S)$ is clearly closed in R^m. Suppose that $Bd(S)$ is not nowhere dense. Then $Int(Bd(S)) \neq \emptyset$. Hence there is a point $x_0 \in Bd(S)$ such that $B(x_0, \epsilon_1) \subseteq Bd(S)$ for some positive real number $\epsilon_1 > 0$. Then we have

$$x_0 \in B(x_0, \epsilon_0 + \frac{\epsilon_1}{2}) \subseteq \bigcup_{x \in Bd(S)} \overline{B}(x, \epsilon_0) = Bd_{\epsilon_0}(S).$$

Thus we have $x_0 \in Int_{\epsilon_0}(Bd_{\epsilon_0}(S))$. Hence $Bd_{\epsilon_0}(S)$ is ϵ_0—thick at x_0. In order to show that the converse is not true in general, choose the open set $S = B(0, \epsilon_0)$ with $\epsilon_0 > 0$. Then we have $Bd(S) = \{x \in R^m : \|x - 0\| = \epsilon_0\} = S(0, \epsilon_0)$. The sphere $S(0, \epsilon_0)$ is closed and nowhere dense. But we have

$$0 \in B(0, \frac{3}{2} \epsilon_0) \subseteq \bigcup_{x \in Bd(S)} \overline{B}(x, \epsilon_0) = Bd_{\epsilon_0}(S).$$

Hence $Bd_{\epsilon_0}(S)$ is ϵ_0—thick at the origin 0.

Let u be any non-zero vector in R^m. Let’s denote the orthogonal space by $u^\perp = \{z \in R^m : z \cdot u = 0\}$. Recall that the projection of a vector $x \in R^m$ along the vector u is given by $proj_u(x) = \frac{u \cdot x}{u \cdot u} u$. Let’s denote the parallel projection from R^m to u^\perp by $\Pi_{(u^\perp)}(x) = x - proj_u(x)$.

THEOREM 3.4. Let S be any subsets of R^m and suppose that $\epsilon_0 \geq 0$. If S is ϵ_0—thick at a point $p \in S$ in R^m then for any non-zero vector $u \in R^m$ the set $\Pi_{(u^\perp)}(S) = \{\Pi_{(u^\perp)}(x) : x \in S\}$ is ϵ_0—thick at the point $\Pi_{(u^\perp)}(p)$ in the $m-1$ dimensional space $\Pi_{(u^\perp)}(R^m)$, but not conversely.

Proof. Suppose that S is ϵ_0—thick at a point $p \in S$ in R^m and let u be any non-zero vector in R^m. Then there is a positive real number $\epsilon_1 > \epsilon_0$ such that $p \in B(p, \epsilon_1) \subseteq S$. Hence we have

$$\Pi_{(u^\perp)}(p) \in \Pi_{(u^\perp)}(B(p, \epsilon_1)) \subseteq \Pi_{(u^\perp)}(S).$$

This completes the proof of the first part since $\Pi_{(u^\perp)}(B(p, \epsilon_1))$ is an open ball in $\Pi_{(u^\perp)}(R^m)$ with the same radius ϵ_1. Now let $\{A, B, C\}$ be the vertices of the equilateral triangle in R^2 with $\|A - B\| = 2\epsilon_0$. Then the
set \(S = B(A, \epsilon_0) \cup B(B, \epsilon_0) \cup B(C, \epsilon_0) \) is not \(\epsilon_0 \)--thick at any point. But the set \(\Pi_{(u^+)}(S) \) is obviously \(\epsilon_0 \)--thick at some point for any direction \(u \) in \(\mathbb{R}^n \).

Lemma 3.5. Let \(\epsilon_0 > 0 \) be given. If \(P, Q \in \mathbb{R}^2 \) are distinct points with \(\| P - Q \| < 2 \epsilon_0 \), then there are two points \(U, V \in \mathbb{R}^2 \) such that \(\| U - P \| = \| U - Q \| = \epsilon_0 = \| V - P \| = \| V - Q \| \).

Proof. We clearly have \(S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{ U, V \} \).

Remark 3.6. It is obvious that \(\text{Int}_{\epsilon_0} [\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)] = \emptyset \) for any two points \(P, Q \) in \(\mathbb{R}^2 \).

Theorem 3.7. Let \(P, Q, U, V \in \mathbb{R}^2 \) be the four points in the above lemma with \(P \) on the left, \(Q \) on the right, \(U \) at the top and \(V \) at the bottom. If a point \(T \in \mathbb{R}^2 \) is an element of the intersection \(\overline{B}(U, \epsilon_0) \cap \overline{B}(V, \epsilon_0) \) then we have

\[
\text{Int}_{\epsilon_0} [\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \cup \overline{B}(T, \epsilon_0)] = \emptyset.
\]

Proof. Put \(Z = \overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \cup \overline{B}(T, \epsilon_0) \). If \(T \) is a boundary point of the intersection \(\overline{B}(U, \epsilon_0) \cap \overline{B}(V, \epsilon_0) \) then the three spheres \(S(T, \epsilon_0), S(P, \epsilon_0) \) and \(S(Q, \epsilon_0) \) meet at the point \(U \) or \(V \). Suppose that they meet at the point \(V \). Then for any point \(x \in \overline{B}(V, \epsilon_0) \) we have \(\| x - V \| \leq \epsilon_0 \). Since \(V \) is a boundary point of the union \(Z \), this implies that any point \(x \) in the set \(\overline{B}(V, \epsilon_0) \cap Z \) is not an \(\epsilon_0 \)--interior point of \(Z \). Since the sphere \(S(V, \epsilon_0) \) passes through the center points \(P, Q, T \) of the three spheres \(S(P, \epsilon_0), S(Q, \epsilon_0) \) and \(S(T, \epsilon_0) \), we also have \(\text{dist}(x, \partial(Z - \overline{B}(V, \epsilon_0))) \leq \epsilon_0 \) for all the points \(x \in Z - \overline{B}(V, \epsilon_0) \). Thus we have \(\text{Int}_{\epsilon_0}(Z) = \emptyset \). The proof of the case where they meet at the point \(U \) is similarly handled. On the other hand, suppose that the point \(T \) is in the interior of the intersection \(\overline{B}(U, \epsilon_0) \cap \overline{B}(V, \epsilon_0) \). Then the center points \(U, V \) are in the open ball \(\overline{B}(T, \epsilon_0) \) and the sphere \(S(T, \epsilon_0) \) meets the boundary of the union \(\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \) at the four points, say \(A, B, C \) and \(D \). Let’s call the point on the upper left \(A \), the point on the lower left \(B \), the point on the upper right \(C \) and the point on the lower right \(D \). Then, for any point \(x \) of the union of the rhombi \(\diamond APBT \) and \(\diamond CTDQ \), we have \(\text{dist}(x, \partial(Z)) \leq \epsilon_0 \) since the points \(A, B, C \) and \(D \) are in the boundary of \(Z \). And, for any point \(x \) in the union of the four circular sectors \(\diamond APB, \diamond ATC, \diamond BTD \) and \(\diamond CQD \), we also have \(\text{dist}(x, \partial(Z)) \leq \epsilon_0 \) since all of the circular arcs of these four
circular sectors are parts of the boundary of Z. Therefore, we have $\text{dist}(x, \partial(Z)) \leq \epsilon_0$ for all the points $x \in Z$. Consequently, we have $\text{Int}_{\epsilon_0}(Z) = \emptyset$. □

Corollary 3.8. Let P_1, P_2, P_3 be three points in R^2. Suppose that

$$\text{Int}_{\epsilon_0} \left[\overline{B}(P_1, \epsilon_0) \cup \overline{B}(P_2, \epsilon_0) \cup \overline{B}(P_3, \epsilon_0) \right] \neq \emptyset.$$

Then we have

1. $S(P_1, \epsilon_0) \cap S(P_2, \epsilon_0) = \{U_1, V_2\}$ and $P_3 \notin \overline{B}(U_1, \epsilon_0) \cap \overline{B}(V_2, \epsilon_0)$
2. $S(P_2, \epsilon_0) \cap S(P_3, \epsilon_0) = \{U_2, V_3\}$ and $P_1 \notin \overline{B}(U_2, \epsilon_0) \cap \overline{B}(V_3, \epsilon_0)$
3. $S(P_3, \epsilon_0) \cap S(P_1, \epsilon_0) = \{U_3, V_1\}$ and $P_2 \notin \overline{B}(U_3, \epsilon_0) \cap \overline{B}(V_1, \epsilon_0)$.

Proof. (1) From the theorem just above, if $S(P_1, \epsilon_0) \cap S(P_2, \epsilon_0) = \{U_1, V_2\}$ and $P_3 \in \overline{B}(U_1, \epsilon_0) \cap \overline{B}(V_2, \epsilon_0)$ then

$$\text{Int}_{\epsilon_0} \left[\overline{B}(P_1, \epsilon_0) \cup \overline{B}(P_2, \epsilon_0) \cup \overline{B}(P_3, \epsilon_0) \right] = \emptyset.$$

The proofs of (2) and (3) are quite similar to the proof of (1) and we omit them. □

Theorem 3.9. Let P, Q, U, V be the four mutually distinct points in R^2 such that $S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{U, V\}$ with P on the left, Q on the right, U at the top and V at the bottom. If a point $T \in R^2$ is an element of the union

$$[B(U, \epsilon_0) - B(V, \epsilon_0)] \cup [B(V, \epsilon_0) - B(U, \epsilon_0)]$$

then $Z = B(P, \epsilon_0) \cup B(Q, \epsilon_0) \cup B(T, \epsilon_0)$ is ϵ_0-thick at some point.

Proof. We need only to prove the case where $T \in [B(U, \epsilon_0) - B(V, \epsilon_0)]$ since the other case is similarly handled. Then we have $U \in B(T, \epsilon_0)$ and $V \notin B(T, \epsilon_0)$. And the sphere $S(T, \epsilon_0)$ meets the boundary of the set $\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)$ at two points, say L on the left, R on the right. Consider the triangle $\triangle LVR$. Let’s denote by V' the point at which the line segment connecting the midpoint $L + \overline{LR}$ and the vertex V intersects the sphere $S(T, \epsilon_0)$. Now if $\angle LV'R \leq \frac{\pi}{2}$ then the radius of the circumscribed circle of the triangles $\triangle LV'R$ is ϵ_0 and $0 < \angle LV'R < \angle LV'R \leq \frac{\pi}{2}$. Hence if r is the radius of the circumscribed circle of the triangle $\triangle LV'R$ then we have

$$2\epsilon_0 = \frac{\overline{TR}}{\sin(\angle LV'R)} < \frac{\overline{TR}}{\sin(\angle LV'R)} = 2r,$$

i.e., $\epsilon_0 < r$.

On the other hand, if $\angle LV'R > \frac{\pi}{2}$ then the point T is positioned higher than the line segment LR. In this case, let C be the image of the reflection of the circle $S(T, \epsilon_0)$ with respect to the line segment LR. Let’s denote by V'' the point at which the line segment connecting the midpoint $\frac{L+R}{2}$ and the vertex V intersects this circle C. Then the point V'' lies inside the triangle $\triangle LVR$ and we have $\angle LV''R \leq \frac{\pi}{2}$. Hence the radius r of the circumscribed circle of the triangle $\triangle LVR$ still satisfies the relation $\epsilon_0 < r$ since the radius of the circumscribed circle of the triangles $\angle LV''R$ is ϵ_0 and $0 < \angle LV'R < \angle LV''R \leq \frac{\pi}{2}$. Since the three sides LV, RV and LR of the triangle $\triangle LVR$ are parts of the closed balls $B(P, \epsilon_0)$, $B(Q, \epsilon_0)$ and $B(T, \epsilon_0)$, respectively, the circumscribed circle and its interior of the triangle $\triangle LVR$ is a subset of the union Z. Thus Z contains an open ball with radius $\frac{\epsilon_0 + r}{2}$ which implies that $Int_{\epsilon_0}(Z) \neq \emptyset$.

Theorem 3.10. (Three points thickness) Let P, Q be the two distinct points in R^2 with $\|P - Q\| < 2\epsilon_0$ such that $S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{U, V\}$ with P on the left, Q on the right, U at the top and V at the bottom. For a point $T \in R^2$, the union $Z = B(P, \epsilon_0) \cup B(Q, \epsilon_0) \cup B(T, \epsilon_0)$ is ϵ_0-thick at some point of Z if and only if

$$T \in \{B(U, \epsilon_0) - B(V, \epsilon_0)\} \cup \{B(V, \epsilon_0) - B(U, \epsilon_0)\}.$$

Proof. By means of the theorems 3.7 and 3.9, we need only to prove that if $T \notin B(U, \epsilon_0) \cup B(V, \epsilon_0)$ then Z is nowhere ϵ_0-thick. Suppose that $T \notin B(U, \epsilon_0) \cup B(V, \epsilon_0)$. Then we have $U, V \notin B(T, \epsilon_0)$. Now there are three cases depending on the relative position of the two points U, V with respect to the sphere $S(T, \epsilon_0)$.

Case I. $U, V \notin S(T, \epsilon_0)$. In this case, the intersection of the sphere $S(T, \epsilon_0)$ and the boundary of the union $B(P, \epsilon_0) \cup B(Q, \epsilon_0)$ is a subset A of R^2 consisting of no point, one point, two points, three points or four points. But all the points of the union $A \cup \{U, V\}$ are the boundary point of the union Z. Hence we have $Int_{\epsilon_0}(Z) = \emptyset$.

Case II. U or $V \in S(T, \epsilon_0)$ and $S(T, \epsilon_0) \cap \partial [B(P, \epsilon_0) \cup B(Q, \epsilon_0)]$ is consisting of the two elements. In this case, we may assume that this intersection contains the point V since the case where it contains U is similarly handled. Then we have $\|x - V\| \leq 2\epsilon_0$ for all the points $x \in Z$. Since V is a boundary point of Z, this implies that $Int_{\epsilon_0}(Z) = \emptyset$.

Case III. U or $V \in S(T, \epsilon_0)$ and $S(T, \epsilon_0) \cap \partial [B(P, \epsilon_0) \cup B(Q, \epsilon_0)]$ is consisting of the three elements. In this case, we may also assume that
the set of the last intersection is \(\{ E, V, F \} \) with \(E \in S(T, \epsilon_0) \cap S(P, \epsilon_0) \).
Since the quadrilaterals \(\square PETV \) and \(\square QVTF \) are the rhombi, we have \(PQ = EF \). Similarly, we have \(EU = TQ \) and \(PT = UF \) by using the appropriate rhombi. Thus the triangles \(\triangle UEF \) and \(\triangle PQT \) are congruent. Since \(PV = TV = QV = \epsilon_0 \), the point \(V \) is the circumcenter of the triangle \(\triangle PQT \). Hence the radius of the circumscribed circle of \(\triangle UEF \) is \(\epsilon_0 \). Since all the three points \(U, E, F \) are the boundary points of \(Z \), this implies that \(\text{Int}_{\epsilon_0}(Z) = \emptyset \). \(\square \)

References

[1] Buhyeon Kang, An Introduction to \(\epsilon_0 \)-Density and \(\epsilon_0 \)-Dense Ace, JCMS. 32 (1) (2019).

Buhyeon Kang
Department of Mathematics, Seokyeong University
Seoul 02713, Korea
E-mail: gangage@skuniv.ac.kr