Korean J. Math.  Vol 28, No 4 (2020)  pp.877-888
DOI: https://doi.org/10.11568/kjm.2020.28.4.877

Gabor frames in $l^2 (\mathbb Z)$ from Gabor frames in $L^2 (\mathbb R)$

Jineesh Thomas, Madhavan Namboothiri N M, Eldo Varghese


In this paper we discuss about the image of Gabor frame under a unitary operator and derive a sufficient condition under which a unitary operator from $L^2 (\mathbb R)$ to $l^2 (\mathbb Z)$ maps Gabor frame in $L^2 (\mathbb R)$ to a Gabor frame in $l^2 (\mathbb Z)$.


Hilbert space, Gabor frame, Orthonormal basis, Unitary operator, Window sequence.

Subject classification

42C15, 47B90, 94A12


Full Text:



Z. Amiri, M. A. Dehghan, E. Rahimib and L. Soltania, Bessel subfusion sequences and subfusion frames, Iran. J. Math. Sci. Inform. 8 (1) (2013), 31–38. (Google Scholar)

P. G. Cazassa and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, R. I. (2004), 87–113. (Google Scholar)

P. G. Cazassa and G. Kutyniok, Finite Frames Theory and Applications, Applied and Numerical Harmonic Analysis series, Birkh ̈auser, (2013). (Google Scholar)

O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkh ̈auser, 2016. (Google Scholar)

O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl.Comput. Harmon. Anal. 17 (2004), 48–68. (Google Scholar)

I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions , J. Math. Physics 27 (1986) 1271–1283. (Google Scholar)

R. J. Duffin and A. C.Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952) 341–366. (Google Scholar)

T.C.Easwaran Nambudiri, K. Parthasarathy, Characterization of Weyl- Heisenberg frame operators, Bull.Sci. Math. 137 (2013) 322–324. (Google Scholar)

T.C.Easwaran Nambudiri, K. Parthasarathy, Generalised Weyl-Heisenberg frame operators, Bull.Sci. Math. 136 (2012) 44–53. (Google Scholar)

Feichtinger H.G., Strohmer T., Gabor Analysis and Algorithms: Theory and Applications, Birkh ̈auser, Boston, 1998. (Google Scholar)

D.Gabor, Theory of communication, J.IEEE. 93 (1946) 429–457. (Google Scholar)

Gotz E.Pfander, Gabor frames in finite dimensions, Birkh ̈auser, (2010). (Google Scholar)

K.Gr ̈ochenig, Foundations of Time Frequency Analysis, Birkh ̈auser, 2001. (Google Scholar)

A. J. E. M.Janssen, Gabor representation of generalized functions, J. Math.Anal. Appl. 83 (1981) 377–394. (Google Scholar)

A. J. E. M.Janssen, From continuous to discrete Weyl-Heisenberg framesthrough sampling, J. Four. Anal. Appl. 3 (5) (1971) 583–596. (Google Scholar)

S. Li and H. Ogawa,Pseudoframes for subspaces with applications, J. FourierAnal.Appl. 10 (2004), 409–431. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr