Korean J. Math.  Vol 29, No 3 (2021)  pp.547-554
DOI: https://doi.org/10.11568/kjm.2021.29.3.547

Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton

Dibakar Dey


The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold $M$ with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if $M$ is complete, then it is compact.


Sasakian 3-manifold; Ricci-Yamabe soliton; Gradient Ricci-Yamabe soliton; Infinitesimal automorphism.

Subject classification

53C25; 35Q51


Full Text:



Y. Akrami, T. S. Koivisto and A. R. Solomon, The nature of spacetime in bigravity: two metrics or none?, Gen. Relativ. and Grav. 47 (2015), 1838. (Google Scholar)

C. P. Boyer and K. Galicki, On Sasakian Einstein geometry, Int. J. Math. 11 (2000), 873–909. (Google Scholar)

C. P . Boyer, K. Galicki and P. Matzeu, On η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177–208. (Google Scholar)

W. Boskoff and M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850174. (Google Scholar)

P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configuration for super- strings, Nuclear Phys. B 258 (1995), 46–74. (Google Scholar)

G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66–94. (Google Scholar)

G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 28 (2017), 337–370. (Google Scholar)

D. Dey, Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv:2005.02322v1 [math.DG] (Google Scholar)

A. Ghosh and R. Sharma, Sasakian metric as a Ricci soliton and related results, J. Geom. Phys. 75 (2014), 1–6. (Google Scholar)

S. Gu ̈ler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math. 43 (2019), 2361–2641. (Google Scholar)

R. S. Hamilton, Three manifold with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306. (Google Scholar)

R. S. Hamilton, Ricci flow on surfaces, Contempory Mathematics 71 (1988), 237–261. (Google Scholar)

R. S. Hamilton, Lectures on geometric flows, 1989 (unpublished). (Google Scholar)

J. B. Jun and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), 293–301. (Google Scholar)

P. Majhi, U. C. De and D. Kar, η-Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform. LV, 2 (2017), 143–156. (Google Scholar)

J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theoret. Phys. 38 (1999), 1113–1133. (Google Scholar)

S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. (Google Scholar)

R. Sharma, Certain results on K-contact and (k,μ)-contact manifolds, J. Geom. 89 (2008), 138–147. (Google Scholar)

R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys. 09 (2012), 1220003. (Google Scholar)

S. Sasaki, Lecture notes on almost contact manifolds-I, Mathematical Institute, Tohoku Univ.(1965) (Google Scholar)

M. D. Siddiqi and M. A. Akyol, η-Ricci-Yamabe solitons on Riemannian submersions from Riemannian manifolds, arXiv.2004.14124v1 [math.DG] (Google Scholar)

S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416–430. (Google Scholar)

V. Venkatesha and D. M. Naik, Yamabe solitons on 3-dimensional contact metric manifolds with Qφ = φQ, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950039. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr