Korean J. Math.  Vol 22, No 1 (2014)  pp.181-206
DOI: https://doi.org/10.11568/kjm.2014.22.1.181

Characterizations of graded Prufer $\star$-multiplication domains

Parviz sahandi


Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid $\Gamma$, and $\star$ be a semistar operation on $R$. In this paper we define and study the graded integral domain analogue of $\star$-Nagata and Kronecker function rings of $R$ with respect to $\star$. We say that $R$ is a graded Prufer $\star$-multiplication domain if each nonzero finitely generated homogeneous ideal of $R$ is $\star_f$-invertible. Using $\star$-Nagata and Kronecker function rings, we give several different equivalent conditions for $R$ to be a graded Prufer $\star$-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a P$v$MD.

Subject classification

13A15, 13G05, 13A02.


This research was supported by a grant from Institute for Research in Fundamen- tal Sciences (IPM) (No. 91130030).

Full Text:



D. D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Pauli 26 (1977), 137–140. (Google Scholar)

D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549–569. (Google Scholar)

D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), 196–215. (Google Scholar)

D. F. Anderson and G. W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169–184. (Google Scholar)

D. D. Anderson and J.S. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461–2475. (Google Scholar)

D.F. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Pru ̈fer ⋆- multiplication domains and class groups, J. Algebra 319 (2008), 272–295. (Google Scholar)

J. T. Arnold and J. W. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483–485. (Google Scholar)

G. W. Chang, Pru ̈fer ∗-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309–319. (Google Scholar)

G.W. Chang and M. Fontana, Uppers to zero and semistar operations in poly- nomial rings, J. Algebra 318 (2007), 484–493. (Google Scholar)

G. W. Chang, B. G. Kang and J. W. Lim, Pru ̈fer v-multiplication domains and related domains of the form D + DS [Γ∗ ] , J. Algebra 323 (2010), 3124–3133. (Google Scholar)

C. C. Chevalley, La notion d’anneau de d ́ecomposition, Nagoya Math. J. 7 (1954), 21–33. (Google Scholar)

E. Davis, Overrings of commutative rings, II, Trans. Amer. Math. Soc. 110 (1964), 196–212. (Google Scholar)

D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, t-linked overrings and Pru ̈fer v-multiplication domains, Comm. Algebra 17 (1989), 2835–2852. (Google Scholar)

D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Pru ̈fer-like domains and semistar going-down domains, Houston J. Math. 37 (3) (2011), 715–731. (Google Scholar)

S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Pru ̈fer semis- tar multiplication domains, Comm. Algebra 32 (2004), 1101–1126. (Google Scholar)

M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169–197. (Google Scholar)

M. Fontana, P. Jara and E. Santos, Pru ̈fer ⋆-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50. (Google Scholar)

M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4801. (Google Scholar)

M. Fontana and K. A. Loper, A Krull-type theorem for semistar integral closure of an integral domain, ASJE Theme Issue “Commutative Algebra” 26 (2001), 89–95. (Google Scholar)

M. Fontana and K. A. Loper, Kronecker function rings: a general approach, in: D. D. Anderson and I. J. Papick (Eds.), Ideal Theoretic Methods in Commuta- tive Algebra, Lecture Notes Pure Appl. Math. 220 (2001), Dekker, New York, 189–205. (Google Scholar)

M. Fontana and K. A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related starand semistar operations, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding(Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, 169–187. (Google Scholar)

M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (4) (2005), 645–664. (Google Scholar)

R. Gilmer, Multiplicative Ideal Theory, New York, Dekker, 1972. (Google Scholar)

E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969. (Google Scholar)

P. Jaffard, Les Syst`emes d’Id ́eaux, Dunod, Paris, 1960. (Google Scholar)

B. G. Kang, Pru ̈fer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989), 151–170. (Google Scholar)

I. Kaplansky, Commutative Rings, revised ed., Univ. Chicago Press, Chicago, 1974. (Google Scholar)

M. Nagata, Local Rings, Wiley-Interscience, New York, 1962. (Google Scholar)

D. G. Northcott, Lessons on ringss, modules, and multiplicities, Cambridge Univ. Press, Cambridge, 1968. (Google Scholar)

A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1–21. (Google Scholar)

M. H. Park, Integral closure of a graded integral domain, Comm. Algebra, 35 (2007), 3965–3978. (Google Scholar)

F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr