Korean J. Math.  Vol 22, No 3 (2014)  pp.395-406
DOI: https://doi.org/10.11568/kjm.2014.22.3.395

Existence of a positive infimum eigenvalue for the $p(x)$-Laplacian Neumann problems with weighted functions

Yun-Ho Kim


We study the following nonlinear problem
-\text{div}(w(x)|\nabla u|^{p(x)-2}\nabla u)+|u|^{p(x)-2}u=\lambda f(x,u) \quad \text{in } \Omega
which is subject to Neumann boundary condition. Under suitable conditions on $w$ and $f$, we give the existence of a positive infimum eigenvalue for the $p(x)$-Laplacian Neumann problem.


$p(x)$-Laplacian; Neumann boundary condition; Weighted variable exponent Lebesgue-Sobolev spaces; Weak solution; Eigenvalue

Subject classification

35D30; 35J60; 35J92; 35P30; 47J10


This research was supported by a 2012 Research Grant from Sangmyung University.

Full Text:



N. Benouhiba, On the eigenvalues of weighted p(x)–Laplacian on RN , Nonlinear Anal. 74 (2011), 235–243. (Google Scholar)

L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·), Math. Nachr. 268 (2004), 31–43. (Google Scholar)

X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446. (Google Scholar)

X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852. (Google Scholar)

X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet prob- lem, J. Math. Anal. Appl. 302 (2005), 306–317. (Google Scholar)

X.L. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007), 2982–2992. (Google Scholar)

H. Galewski, On the continuity of the Nemyskij operator between the spaces Lp1(x) and Lp2(x), Georgian Math. Journal. 13 (2006), 261–265. (Google Scholar)

Y.-H. Kim, L. Wang and C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl. 371 (2010), 624–637. (Google Scholar)

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996. (Google Scholar)

I. Sim and Y.-H. Kim, Existence of solutions and positivity of the infimum eigen- value for degenerate elliptic equations with variable exponents, Discrete and Con- tinuous Dynamical Systems, Supplement 2013, 695–707. (Google Scholar)

A. Szulkin and M. Willem, Eigenvalue problem with indefinite weight, Studia Math. 135 (1995), 191–201. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr