DOI: https://doi.org/10.11568/kjm.2014.22.3.529
Financial models induced from auxiliary indices and twitter data
Abstract
Keywords
Subject classification
60G15, 60H10, 60j65, 60J75, 62P20.Sponsor(s)
This study was supported by 2013 Research Grant of Kangwon National University(C1010184-01-01).Full Text:
PDFReferences
J. Bollen, H. Mao and X. Zeng, Twitter mood predicts the stock market, http://arxiv.org/abs /1010.3003 (Google Scholar)
R. Chen and M. Lazer, Sentiment analysis of twitter feeds for the prediction of stock market movement, CS 229:Machine Learning, 2011, cs229.stanford.deu (Google Scholar)
C. Castillo, M. Mendoza and B. Poblete, Information credibility on twitter, Proceedings of World Wide Web Conference (2011), 675–684. (Google Scholar)
E. F. Fama, Efficient capital market: A review of theory and empirical work, J. Finance 25 (2) (1970), 383–417. (Google Scholar)
M. Jeanblanc, V. Lacoste and S. Roland, Portfolio optimization under a partially observed jump-diffusion model, Prepublications de l,Equipe d’Analyse et probabilitie’s 2010. (Google Scholar)
S. S. Kim, A study on the relationship between volume of corporate web news and stock prices, Master’s Thesis, KAIST, 2011. (Google Scholar)
S. S. Kwon and J. H. Lee, The function of intraday implied volatility in the KOISP200 options, Asia-Pacific J. of Financial Studies (2008), 913–948. (Google Scholar)
S. KumarF J. Morstatter and H. Liu, Twitter Data Analysis, Springer, August 19, 2013 (Google Scholar)
X. Liang, Mining associations between web stock news volumes and stock prices, International Journal of Systems Science 37 (13) (2006), 919–930. (Google Scholar)
C. Lindberg, Portfolio optimization and statistics in stochastic volatility markets, Thesis for Doctor of Philosophy, Chalmers Univ. Goteborg, Sweden, 2005 (Google Scholar)
D. H. Lee, H. G. Kang and C. M. Lee, Autocorrelation analysis of the sentiment with stock information appearing on gig-data, 한국금용공학회 학술발표논문집 2013, 282–304. (Google Scholar)
J. Oh, Multi-type financial asset models for portfolio construction, J. KSIAM 14 (4) (2010), 211–224. (Google Scholar)
C. Park, L. Le, J. S. Marron, J. Park, V. Pipiras, F. D. Smith, R. L. Smith, M. Trovero and Z. Zhu, Long range dependence analysis of internet traffic, Journal of Applied Statistics 38 (7) (2011), 1407–1433. (Google Scholar)
B. L. S. Prakasa Rao, Self-similar processes, fractional Brownian motion and statistical inference, A Festschrift for Herman Rubin Institute of Math. Statistics Lecture Notes - Monograph Series V. 45, 98–124, 2004 (Google Scholar)
P. Protter, Stochastic Integration and Differential Equations, Berlin Heidelberg N.Y., Springer, 2nd Printing, 1992 (Google Scholar)
S. A. Ross, Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy, J. of Finance 44 (1) (1989), 1–18. (Google Scholar)
W. Sun, S. Rachev, F. J. Fabozzi and P. S. Kalev, Fractals in trade dulation: Capturing long-range dependence and heavy tailednes in modeling trade duration, Annals of Finance 4 (2008), 217–241. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr