DOI: https://doi.org/10.11568/kjm.2015.23.2.259
Dirichlet boundary value problem for a class of the noncooperative elliptic system
Abstract
Keywords
Subject classification
35J50, 35J55.Sponsor(s)
†This work was supported by Basic Science Research Program through the Na- tional Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (KRF-2013010343).Full Text:
PDFReferences
A. Ambrosetti and G. Prodi, On the inversion of some differential mappings with singularities between Banach spaces, Ann. Mat. Pura. Appl. 93 (1972), 231–246. (Google Scholar)
K. C. Chang, Ambrosetti-Prodi type results in elliptic systems, Nonlinear Anal- ysis TMA. 51 (2002), 553–566. (Google Scholar)
D. G. de Figueiredo, Lectures on boundary value problems of the Ambrosetti- Prodi type, 12 Semin ́ario Brasileiro de An ́alise, 232–292 (October 1980). (Google Scholar)
D. G. de Figueiredo, On the superlinear Ambrosetti-Prodi Problem, MRC Tech. Rep 2522, May, (1983). (Google Scholar)
D. G. de Figueiredo and Y. Jianfu, Critical superlinear Ambrosetti-Prodi prob- lems, Top. Methods in Nonlinear Analysis, 14 (1) (1999), 59–80. (Google Scholar)
A. M. Micheletti and C. Saccon, Multiple nontrivial solutions for a floating beam equation via critical point theory, J. Differential Equations 170 (2001), 157–179. (Google Scholar)
D. C. de Morais Filho, A Variational approach to an Ambrosetti-Prodi type problem for a system of elliptic equations, Nonlinear Analysis, TMA. 26 (10) (1996), 1655–1668. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr