DOI: https://doi.org/10.11568/kjm.2016.24.3.397
$k-$ denting points and $k-$ smoothness of Banach spaces
Abstract
Keywords
Subject classification
46B09; 46B20Sponsor(s)
This work was supported by the National Natural Science Foundation of China (Grant no.11561053) and Foundation of Inner Mongolia Normal University RCPY-2-2012-K-034.Full Text:
PDFReferences
Ky Fan and I. Glicksburg, Fully convex normed linear spaces, Proc. Natl. Acad. Sci. USA 41 (1955), 947–953. (Google Scholar)
P.D.Liu, Martingle and Geometric of Banach Space. Science Press. Shanghai (in Chinese), 2007. (Google Scholar)
H.B.Maynard, A geometrical characterization of Banach spaces having the Radon-Nikodym property, Trans.Amer.Math.Soc. 185(1973) 493-500. (Google Scholar)
C.X.Nan and J.H.Wang, k-strict convexity and k-smoothness, Chinese Ann.Math (in Chinese).(Series A). 11(3)(1990) 321-324. (Google Scholar)
M.A.Rieffel, Dentable subsets of Banach spaces, with applications to a Radon-Nikodym theorem, Funct.Anal.Proc. (Conf. Irvine, Calif., 1966), Acad.Press,London,Thompson, Washington, D.C. 71-77. (Google Scholar)
S.Q.Shang,Y.A.Cui,Y.Q.Fu, Denting point, smoothness of Banach spaces and approximation compactness[J]. Acta Mathematica Sinica (in Chinese). 53(6)(2010) 1217-1224. (Google Scholar)
C.X.Wu, Y.J.Li, Strong convexity in Banach spaces,Chin.J.Math. 13(1993) 105- 108. (Google Scholar)
X.T. Yu. Geometric Theory of Banach Space.East China Normal Univ (in Chi- nese), 1984. (Google Scholar)
Z.H.Zhang On k-strictly convex and k-very smooth Banach space, North- east.Math.J. 12(2)(1996) 165-170. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr