DOI: https://doi.org/10.11568/kjm.2016.24.3.469
Generalization of the Schensted algorithm for rim hook tableaux
Abstract
Keywords
Subject classification
05E10Sponsor(s)
Full Text:
PDFReferences
A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320–328. (Google Scholar)
D. E. Knuth, Sorting and Searching; The Art of Computer Programming, Vol. 3 (1973), Addison-Wesley, Mass. (Google Scholar)
D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709–727. (Google Scholar)
J. Lee, A Schensted algorithm for shifted rim hook tableaux, J. Korean Math. Soc. 31 (1994), 179–203. (Google Scholar)
B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62–103. (Google Scholar)
C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179–191. (Google Scholar)
B. Sagan and R. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), 161–193. (Google Scholar)
D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), 211–247. (Google Scholar)
D. E. White, A bijection proving orthogonality of the characters of Sn, Advances in Math. 50 (1983), 160–186. (Google Scholar)
D. R. Worley, A Theory of Shifted Young Tableaux, Ph. D. thesis (1984), M.I.T. (Google Scholar)
Refbacks
- There are currently no refbacks.
ISSN: 1976-8605 (Print), 2288-1433 (Online)
Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr