Average of class numbers of some family of Artin-Schreier extensions of rational function fields

Hwanyup Jung

Abstract


In this paper we obtain average of class numbers of some family of Artin-Schreier extensions of rational function field $\mathbb{F}_{q}(t)$, where $q$ is a power of $3$.

Keywords


Class numbers, $L$-functions, Artin-Schreier extensions

Full Text:

PDF

References


S. Bae, H. Jung and P-L. Kang, Artin-Schreier extensions of the rational function field, Mathematische Zeitschrift 276 (2014), 613–633.

Y-M. Chen, Average values of L-functions in characteristic two, J. Number Theory 128 (2008), 2138–2158.

J. Hoffstein and M. Rosen, Average values of L-series in function fields, J. Reine Angew. Math. 426 (1992), 117–150.

S. Hu and Y. Li, The genus fields of Artin-Schreier extensions, Finite Fields Appl. 16 (2010), 255–264.

H. Jung, Note on average of class numbers of cubic function fields, The Korean Journal of Mathematics 22 (2014), 419–427.

H. Jung, Average of L-functions of some family of Artin-Schreier extensions over rational function fields, submitted.

M. Rosen, Average value of class numbers in cyclic extensions of the rational function field, Number Theory.(Halifax, NS, 1994) (1995), 307-323.

C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2) 45 (1944), 667–685.

L. A. Takhtadzhyan and A. I. Vinogradov, Analogues of the Vinogradov-Gauss formula on the critical line, J. Soviet Math. 24 (1984), 183–208.




DOI: http://dx.doi.org/10.11568/kjm.2016.24.4.601

Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr