Korean J. Math.  Vol 24, No 4 (2016)  pp.647-662
DOI: http://dx.doi.org/10.11568/kjm.2016.24.4.647

Lipschitz continuous and compact composition operator acting between some weighted general hyperbolic-type classes

A. Kamal, A. El-Sayed Ahmed, T. I. Yassen


In this paper, we study Lipschitz continuous, the boundedness  and compactness of the composition operator $C_\phi$ acting between the general hyperbolic Bloch type-classes ${\mathcal{B}}^{*}_{p,\log,\alpha}$ and general hyperbolic Besov-type classes ${F_{p,\log}^{*}(p,q,s)}.$ Moreover, these classes are shown to be complete metric spaces with respect to the corresponding metrics.


metric space, the general hyperbolic Bloch type-classes B∗ p,log,α, the general hyperbolic Besov-type classes F ∗ p,log(p, q, s)..

Subject classification

47B38, 46E15.


Full Text:



A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Math. Scand. 104 (2) (2009), 275–295. (Google Scholar)

A. El-Sayed Ahmed and M. A. Bakhit, Composition operators acting between some weighted Mobius invariant spaces, Ann. Funct. Anal. AFA 2 (2) (2011), 138–152 (Google Scholar)

A. El-Sayed Ahmed, Natural metrics and composition operators in generalized hyperbolic function spaces, J. Inequal. Appl. 185 (2012), 1–13. (Google Scholar)

S. Charpentier, Compact composition operators on the Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball, J. Oper. Theory 69 (2) (2013), 463–481. (Google Scholar)

M. Kotilainen, Studies on composition operators and function spaces, Report Series. Department of Mathematics, University of Joensuu 11. Joensuu. (Disser- tation) (2007). (Google Scholar)

L. Luo and J. Chen, Essential norms of composition operators between weighted Bergman spaces of the unit disc, Acta Math. Sin., Engl. Ser. 29 (4) (2013), 633–638. (Google Scholar)

S. Makhmutov and M. Tjani, Composition operators on some M ̈obius invariant Banach spaces, Bull. Austral. Math. Soc. 62 (2000), 1–19. (Google Scholar)

X. Li, F. P ́erez-Gonz ́alez and J. R ̈atty ̈a, Composition operators in hyperbolic Q-classes, Ann. Acad. Sci. Fenn. Math. 31 (2006), 391–404. (Google Scholar)

F. P ́erez-Gonz ́alez, J.R ̈atty ̈a and J. Taskinen, Lipschitz continuous and compact composition operators in hyperbolic classes, Mediterr. J. Math. 8 (2011), 123– 135. (Google Scholar)

K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405–420. (Google Scholar)

M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), 4683–4698. (Google Scholar)

J. Zhou, Composition operators from Bα to QK type spaces, J. Funct. Spaces Appl. 6 (1) (2008), 89–105. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr