On statistically sequentially quotient maps

V. Renukadevi, B. Prakash


In this paper, we introduce the concept of statistically sequentially quotient map which is a generalization of sequence covering map and discuss the relation with covering maps by some examples. Using this concept, we give an affirmative answer for a question by Fucai Lin and Shou Lin.


|sequence covering; 1-sequence covering; sequentially quotient; sn-network; boundary compact map

Full Text:



B. Alleche, A. Arhangel’skii and J. Calbrix, Weak developments and metrization, Topology Appl. (2000), 23–38.

A. Arhangel’skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115– 162.

J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.

G. Di Maio and Lj. D. R. Koˇcinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28–45.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.

S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.

Y. Ge, On sn-metrizable spaces, Acta Math. Sinica 45 (2002), 355-360(in chinese).

G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332.

Z. Li, Images of locally compact metric spaces, Acta Math. Hungar. 99 (2003), 81–88.

J. Li, andS. Jiang, On sequence-covering K−mappings, Indian J. Pure Appl. Math. 34 (2003), 397–403.

S. Lin, On sequence-covering s-maps, Adv. Math. (in Chinese) 25 (1996), 548– 551.

S. Lin, Point-countable covers and sequence-covering Mappings (in Chinese): Science Press, Beijing, 2002

F. Lin and S. Lin, On Sequence-covering boundary compact maps of metric spaces, Adv. Math(China) 39(1) (2010), 71–78.

F. Lin and S. Lin, Sequence-covering maps on generalized metric spaces, Houston J. Math. 40(3) (2014), 927–943.

S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.

C. Liu and S. Lin, On countable-to-one maps, Topology Appl. 154 (2007), 449– 454.

E. A. Michael and K. Nagami, Compact-covering images of metric spaces, Proc. Amer. Math. Soc. 37 (1973), 260–266.

I. M. Niven, H. S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, John wiley and sons. inc., 1991

I. J. Schoenberg, The Integrability of certain function and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

F. Siwiec, Sequence-covering and countably bi-quotient maps, General Topology Appl. 1 (1971), 143–154.

V. V. Tkachuk, Monolithic spaces and D-spaces revisited, Topology Appl. 156 (2009), 840–846.

P. Yan, S. Lin and S. Jiang, Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47(1) (2004), 87–90.

Z. Tang and F. Lin, Statistical versions of sequential and Fr ́echet Urysohn spaces, Adv. Math. (china) 44 (2015), 945–954.

DOI: http://dx.doi.org/10.11568/kjm.2017.25.1.61


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr