Korean J. Math.  Vol 24, No 4 (2016)  pp.637-645
DOI: https://doi.org/10.11568/kjm.2016.24.4.637

Dynamical Bifurcation of the Burgers-Fisher equation

Yuncherl Choi


In this paper, we study dynamical Bifurcation of  the Burgers-Fisher equation. We show that the equation bifurcates an invariant set $\mathcal{A}_n (\beta)$ as the control parameter $\beta$ crosses over $n^2$ with $n \in \mathbb{N}$. It turns out that  $\mathcal{A}_n (\beta)$  is homeomorphic to $S^1$, the unit circle.


Burgers-Fisher equation; dynamic bifurcation; center manifold

Subject classification

37G35; 35B32


Full Text:



H. Berestycki, S. Kamin and G. Sivashinsky, Metastability in a flame front evolution equation, Interfaces and Free Boundaries, 3 (2001), 361–392. (Google Scholar)

Y. Choi, Dynamical bifurcation of the one-dimensional convective Cahn-Hilliard equation, Korean J. Math. 22 (2014), 621–632. (Google Scholar)

C.-H. Hsia and X. Wang, On a Burgers’ type equation, Dics. Cont. Dyn. Syst. B 6 (2006), 1121–1139. (Google Scholar)

J. Logan, An introduction to nonlinear partial differential equations, Pure and Applied Mathematics, John Wiley and Sons Inc., New York, 1994. (Google Scholar)

L. Mei and K. W. Ong, Dynamic tansition of generalized Burgers equation, J. Math. Fluid Mech. 18 (2016), 89–101. (Google Scholar)

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005. (Google Scholar)

W. Xinyi and L. Yuekai, Exact solutions of the extended Burgers-Fisher equation, Chinse Phys. Lett. 7 (1990), 145–147. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr