DOI: https://doi.org/10.11568/kjm.2017.25.1.19

### Strong convergence of an iterative algorithm for a class of nonlinear set-valued variational inclusions

#### Abstract

In this communication, we introduce an Ishikawa type iterative algorithm for finding the approximate solutions of a class of nonlinear set valued variational inclusion problems. We also establish a characterization of strong convergence of this iterative techniques.

#### Keywords

#### Subject classification

40H90#### Sponsor(s)

#### Full Text:

PDF#### References

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, 1980. (Google Scholar)

J. P. Aubin, Mathematical methods of game theory and economics, North Hol- land, Amsterdam, The Netherlands, 1982. (Google Scholar)

H. Brezis, Operateurs maximaux monotone er semi groupes de contractions dans les espaces de Hilbert, North-Holland Mathematices Studies 5 Notes de Matem- atica (50) North-Holland, Amsterdam, 1973. (Google Scholar)

R. E. Bruck and S. Reich, Accretive operators, Banach limits and dual ergodic theorems, Bull. Acad. Polon Sci. 12 (1981), 585–589 (Google Scholar)

R. Glowinski, J. L. Lions and R. Tremolieres, Numerical analysis of variational inequalities, North-Holland, Amsterdam, 1981. (Google Scholar)

F. Giannessi and A. Mugeri, Variational inequalities and network equilibrium problems, Plenum Press, New York NY USA, 1995. (Google Scholar)

L. Gioranescu, Geometry of Banach spaces, duality mapping and nonlinear prob- lems, kluwer Acad. Press, Amsterdam, 1990. (Google Scholar)

N. Kikuchi and J. T. Oden, Contact problems in elasticity, SIAM, Philadelphia, 1988. (Google Scholar)

P. D. Panagiotoupoulos and G. E. Stavroulakis, New types of variational principles based on the notion of quasi differentiability, Acta Mech. 94 (1992), 171–194. (Google Scholar)

A. Hassouni and A. Moudafi, A perturbed algorithms for variational inequalities, J. Math. Anal. Appl. 185 (1994), 706–712. (Google Scholar)

X. P. Ding, Perturbed proximal point algorithms for generalized quasi variational inclusions, J. Math. Appl. Appl. 201 (1997), 88–101. (Google Scholar)

X. P. Ding, Proximal point algorithm with errors for generalized strongly non-linear quasi-variational inclusions, Appl. Math. Mech. 19 (7) (1998), 637–643. (Google Scholar)

X. P. Ding, On a class of generalized nonlinear implicit quasivariational inclusions, Appl. Math. Mech. 20 (10) (1999), 1087–1098. (Google Scholar)

X. P. Ding, Generalized implicit quasivariational inclusions with fuzzy set-valued mappings, Comput. Math. Appl. 38 (1) (1999), 71–79. (Google Scholar)

X. P. Ding, Perturbed proximal point algorithms for general quasi-variational-like inclusions, J. Computat. Appl. Math. 113 (2000), 153–165. (Google Scholar)

X. P. Ding, Generalized quasi-variational-like inclusions with nonconvex functionals, Appl. Math. Comput. 122 (2001), 267–282. (Google Scholar)

X. P. Ding, Perturbed Ishikawa Type Iterative Algorithm for Generalized Quasi-variational Inclusions, Appl. Math. Comput. 14 (2003), 359–373. (Google Scholar)

X. P. Ding, Algorithms of solutions for completely generalized mixed implicit quasivariational inclusions, Appl. Math. Comput. 148 (1) (2004), 47–66. (Google Scholar)

X. P. Ding, Predictor-Corrector iterative algorithms for solving generalized mixed quasi-variational-like inclusion, J. Comput. Appl. Math. 182 (1) (2005), 1–12. (Google Scholar)

X. P. Ding and Salahuddin, On a system of general nonlinear variational inclusions in Banach spaces, Appl. Math. Mech. 36 (12) (2015), 1663–1672, DOI:10.1007/s10483-015-1972-6. (Google Scholar)

X. P. Ding and H. R. Feng, The p-step iterative algorithm for a system of gen- eralized mixed quasi-variational inclusions with (A,η)-accretive operators in q- uniformly smooth Banach spaces, J. Comput. Appl. Math. 220 (1-2) (2008), 163–174. (Google Scholar)

X. P. Ding and H. R. Feng, Algorithm for solving a new class of generalized nonlinear implicit quasi-variational inclusions in Banach spaces, Appl. Math. Comput. 208 (2009), 547–555. (Google Scholar)

X. P. Ding and Z. B. Wang, Sensitivity analysis for a system of parametric gen- eralized mixed quasi-variational inclusions involving (K, η)-monotone mappings, Appl. Math. Comput. 214 (2009) 318–327. (Google Scholar)

X. P. Ding, Z. B. Wang, Auxiliary principle and algorithm for a system of gen- eralized set-valued mixed variational-like inequality problems in Banach spaces, J. Comput. Appl. Math. 223 (2010), 2876–2883. (Google Scholar)

Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operators technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (6) (2004), 647–653. (Google Scholar)

X. He, On φ-strongly accretive mapping and some set valued variational problems, J. Math. Anal. Appl. 277 (2) (2003), 504–511. (Google Scholar)

N. J. Huang, On the generalized implicit quasi variational inequalities, J. Math. Anal. Appl. 216 (1997), 197–210. (Google Scholar)

J. S. Jung and C. H. Morales, The Mann process for perturbed m-accretive operators in Banach spaces, Nonlinear Anal. 46 (20) (2001), 231–243. (Google Scholar)

S. S. Chang, Set valued variational inclusions in Banach Spaces, J. Math. Anal. Appl. 248 (2000), 438–454. (Google Scholar)

S. S. Chang, J. K. Kim and H. K. Kim, On the existence and iterative approx- imation problems of solutions for set valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002), 89–108. (Google Scholar)

S. S. Chang, Y. J. Cho, B. S. Lee and I. J. Jung, Generalized set valued varia- tional inclusions in Banach spaces, J. Math. Anal. Appl. 246 (2000), 409–422. (Google Scholar)

S. S. Chang, Salahuddin and Y. K. Tang, A system of nonlinear set valued variational inclusions, SpringerPlus 2014, 3:318, Doi:10.1186/2193-180-3-318. (Google Scholar)

S. S. Chang, Y. J. Cho, B. S. Lee, I. J. Jung and S. M. Kang, Iterative approxi- mations of fixed points and solutions for strongly accretive and strongly pseudo contractive mappings in Banach Spaces, J. Math. Anal. Appl. 224 (1998), 149– 165. (Google Scholar)

L. C. Ceng, S. S. Schaible and J. C. Yao, On the characterization of strong convergence of an iterative algorithm for a class of multivalued variational in- clusions, Math. Math. Oper. Res. 70 (2009), 1–12. (Google Scholar)

Y. J. Cho, H. Y. Zhou, S. M. Kang, S. S. Kim, Approximations for fixed points of φ-hemicontractive mappings by the Ishikawa iterative process with mixed errors, Math. Comput. Model. 34 (2001), 9–18. (Google Scholar)

C. E. Chidume, H. Zegeye and K.R. Kazmi, Existence and convergence theorem for a class of multivalued variational inclusions in Banach space, Nonlinear Anal. 59 (2004), 649–656. (Google Scholar)

M. F. Khan and Salahuddin, Generalized multivalued nonlinear co-variational inequalities in Banach spaces, Funct. Diff. Equations 14 (2-4) (2007), 299–313. (Google Scholar)

M. K. Ahmad and Salahuddin, Stable perturbed algorithms for a new class of generalized nonlinear implicit quasi variational inclusions in Banach spaces, Advances in Pure Math. 2 (2) (2012), 139–148. (Google Scholar)

M. F. Khan and Salahuddin, Generalized co-complementarity problems in p-uniformly smooth Banach spaces, JIPAM, J. Inequal. Pure Appl. Math. 7 (2), Article 66, (2006), 11 pages. (Google Scholar)

R. U. Verma and Salahuddin, Extended systems of nonlinear vector quasi variational inclusions and extended systems of nonlinear vector quasi optimization problems in locally FC-spaces, Commun. Appl. Nonlinear Anal. 23 (1) (2016), 71–88. (Google Scholar)

Jr. S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–487. (Google Scholar)

### Refbacks

- There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr