Subnormality of the weighted Ces\`aro operator $ C_h \in l^2(h) $

Abderazak Hechifa, Abdelouahab Mansour


The subnormality of some classes of operators is a very interesting property. In this paper, we prove that the weighted Ces\`aro operator $ C_h \in \ell^2(h) $ is subnormal and we described completely the set of the extended eigenvalues for the weighted Ces\`aro operator, some other important results are also given.


Extended eigenvalue, Extended eigenoperator, Ces`aro operator

Full Text:



Animikh Biswas, Alan Lambert and SrdjanPetrovic. Extended eigenvalues and the Volterra operator. Glasg. math. J. 44 (3) (2002), 521–534.

Animikh Biswas and Srdjan Petrovic. On extended eigenvalues of operators. Integral Equtions Operator Theory 55 (2) (2006), 233–248.

Paul S. Bourdon and Joel H. Shapiro. Intertwining relations and extended eigen- values for analytic Toeplitz operators. Illinois J. Math. 52 (3) (2008), 1007–1030.

Arlen Brown, P.R.Halmos and A.L.Shields, Ces`aro operators, Acta Sci.Math. (Szeged) 26 (1965), 125–137.

P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Company, Inc.Princeton, New Jerse, (1967) .

M. Lacruz, F. Saavedra, S. Petrovic and O. Zabeti. Extended eigenvalues for Ces`aro operators, J. Math. Anal. Appl. 429 (2015), 623–657.

A. L. Shields and L. J. Wallen. The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/1971), 777–788.

Tavan T. Trent, New conditions for subnormality, Pacific Journal of Mathematics, Vol. 93, No. 2, April, 1981.

Julia Wagner, On the cesro operator in weighted l2sequence space and the generalized concept of normality, Ann. Funct. Anal. 4 (2) (2013), 1–11.



  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: