Korean J. Math.  Vol 26, No 1 (2018)  pp.75-85
DOI: http://dx.doi.org/10.11568/kjm.2018.26.1.75

Nonconstant warping functions on Einstein warped product manifolds with $2-$dimensional base

Soo-Young Lee


In this paper,  we study nonconstant warping functions on an Einstein warped product manifold $M=B \times _{f^2}  F$ with a warped product metric $g=g_B +f(t)^2 g_F$. And we consider a $2-$dimensional base manifold $B$~ with a metric $g_B = dt^2 +(f'(t))^2 du^2 .$ As a result, we prove the following: if $M$ is an Einstein warped product manifold with a $2-$dimensional base, then there exist generally nonconstant warping functions $f(t).$


warping function, warped product manifold, Einstein manifold

Subject classification

53C15, 53C21, 53C25, 58D17


Full Text:



A.L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987. (Google Scholar)

J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, Vol. 67, Dekker, New York, 1981. (Google Scholar)

J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry (2nd ed.), Marcel Dekker, Inc., New York (1996). (Google Scholar)

J. Case, Y.J. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Diff. Geo. and its applications 29 (2011), 93–100. (Google Scholar)

F.E.S. Feitosa, A.A. Freitas, and J.N.V. Gomes, On the construction of gradient Ricci soliton warped product, math.DG. 26, May, (2017). (Google Scholar)

C. He, P.Petersen, and W. Wylie, On the classification of warped product Ein- stein metrics, math.DG. 24, Jan.(2011). (Google Scholar)

C. He, P.Petersen, and W. Wylie, Uniqueness of warped product Einstein metrics and applications, math.DG. 4, Feb.(2013). (Google Scholar)

Dong-Soo Kim, Einstein warped product spaces, Honam Mathematical J. 22 (1) (2000), 107–111. (Google Scholar)

Dong-Soo Kim, Compact Einstein warped product spaces, Trends in Mathemat- ics, Information center for Mathematical Sciences, 5 (2) (2002) (2002), 1–5. (Google Scholar)

Dong-Soo Kim and Young-Ho Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Soc. 131 (8) (2003), 2573–2576. (Google Scholar)

B. O’Neill, Semi-Riemannian Geometry, Academic, New York, 1983. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr