Korean J. Math.  Vol 27, No 1 (2019)  pp.175-192
DOI: https://doi.org/10.11568/kjm.2019.27.1.175

Hom-Lie-Yamaguti superalgebras

Donatien Gaparayi, Sylvain Attan, A. Nourou Issa


(Multiplicative) Hom-Lie-Yamaguti superalgebras are defined as a $\mathbb{Z}_2$-graded generalization of Hom-Lie Yamaguti algebras and also as a twisted generalization of Lie-Yamaguti superalgebras. Hom-Lie-Yamaguti superalgebras generalize also Hom-Lie  supertriple  systems (and subsequently ternary multiplicative Hom-Nambu superalgebras) and  Hom-Lie superalgebras in the same way as  Lie-Yamaguti superalgebras  generalize Lie supertriple systems and Lie superalgebras. Hom-Lie-Yamaguti superalgebras are obtained  from Lie-Yamaguti superalgebras by twisting along superalgebra even endomorphisms. We show  that the category  of (multiplicative) Hom-Lie-Yamaguti superalgebras is closed under twisting by self-morphisms. Constructions of some examples of Hom-Lie-Yamaguti superalgebras  are given. The notion of an $nth$ derived (binary) Hom-superalgebras is extended to the one of an $nth$ derived binary-ternary  Hom-superalgebras and it is shown that the category of Hom-Lie-Yamaguti superalgebras is closed under the process of taking $nth$ derived  Hom-superalgebras.


Lie-Yamaguti superalgebra (i.e.generalized Lie supertriple system, Lie superalgebra), Hom-Lie-Yamaguti superalgebra (i.e.generalized Hom-Lie supertriple system, Hom-Lie superalgebra).

Subject classification

17A30, 17A32, 17D99


Donatien Gaparayi

Full Text:



K. Abdaoui, F. Ammar and A. Makhlouf, Hom-Lie Superalgebras and Hom-Lie admissible Superalgebras, Journal of algebra. 324 (7) (2010), 1513–1528. (Google Scholar)

, K. Abdaoui, F. Ammar and A. Makhlouf, Hom-alternative, Hom-Malcev and Hom-Jordan Superalgebras, arXiv: 1304.1579v1 [math.RA] Apr 2013. (Google Scholar)

H. Albuquerque and A. Elduque, Classification of Mal’tsev Superalgebras of small dimensions, Algebra and Logic 35 (6) (1996), 512–554. (Google Scholar)

H. Ataguema, A. Makhlouf and S.D. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (2009), 083501. (Google Scholar)

S. Attan and A. Nourou Issa, Hom-Bol algebras, Quasigroups and related Systems 21 (2013), 131–146. (Google Scholar)

Y. Fregier and A. Gohr, Unital algebras of Hom-associative type and surjective or injective twistings, J. of Gen. Lie Theo. and Appl. 3 (4) (2009), 285–295. (Google Scholar)

D. Gaparayi and A. N. Issa, A twisted generalization of Lie-Yamaguti algebras, Int. J. Algebra. 6 (7) (2012), 339–352. (Google Scholar)

D. Gaparayi and A. N. Issa, Hom-Akivis superalgebras, Journal of Algebra and Computational Applications. 6 (1) (2017), 36–51. (Google Scholar)

J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ−derivations, J. Algebras 292 (2006), 314–361. (Google Scholar)

A. N. Issa, Hom-Akivis algebras, Comment. Math. Univ. Carolin. 52 (4) (2011), 485–500. (Google Scholar)

A. N. Issa, Supercommutator algebras of right (Hom)-alternative superalgebras, arXiv:1710.02706v1[math.RA] (Google Scholar)

A. Koulibaly and M.F. Ouedraogo, Supersyst`emes Triples de Lie associ ́es aux superalg`ebres de Malcev, Africa Matematika 14 (3) (2002). (Google Scholar)

D. Larsson and S. D. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-cycle-like identies, J. Algebra. 288 (2005), 321–344. (Google Scholar)

D. Larsson and S. D. Silvestrov, Quasi-Lie algebras, Comptemp.Math. 391 (2005). (Google Scholar)

A. Makhlouf, Hom-Alternative algebras and Hom-Jordan algebras, Int. Elect. J. Alg. 8 (2010), 177–190. (Google Scholar)

A. Makhlouf and Silvestrov S.D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51–64. (Google Scholar)

S. Okubo, Jordan-Lie Super Algebra and Jordan-Lie Triple System, Journal of algebra 198 (1997), 388–411. (Google Scholar)

D. Yau, Hom-algebras and homology, J. Lie Theory. 19 (2009), 409–421. (Google Scholar)

D. Yau, Hom-Novikov algebras, J. Phys. A 44 (2011), 085202. (Google Scholar)

D. Yau, Hom-Maltsev, Hom-alternative and Hom-Jordan algebras, Int. Elect. J. Alg. 11 (2012), 177–217. (Google Scholar)

D. Yau , On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012), 506–522. (Google Scholar)

T. Zhang and J. Li, Representations and cohomologies of Hom-Lie-Yamaguti algebras with applications, Colloquium Mathematicum 148 (2) (2017), 131–155. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr