Korean J. Math.  Vol 26, No 3 (2018)  pp.537-544
DOI: https://doi.org/10.11568/kjm.2018.26.3.537

The $q$-adic liftings of codes over finite fields

Young Ho Park


There is a standard construction of lifting cyclic codes over the prime finite field $\mathbb{Z}_p$ to the rings $\mathbb{Z}_{p^e}$ and to the ring of $p$-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields $\mathbb{F}_{p^r}$ to codes over Galois rings $GR(p^e,r)$. We give concrete examples with all of the lifts.


codes over rings, lifting, p-adic codes, Galois rings

Subject classification

94B05, 11T71


This work was supported by 2016 Research Grant from Kangwon National Uni- versity (No. 520160208).

Full Text:



A.R.Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des. Codes. Cryptogr. 6 (1995), 21–35. (Google Scholar)

S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumer- ators, Discrete Math. 305 (2005), 123–135. (Google Scholar)

S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65–80. (Google Scholar)

F. Q. Gouvˆea, p-adic numbers. An introduction, Springer, 2003. (Google Scholar)

W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003. (Google Scholar)

F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977. (Google Scholar)

Y.H. Park, Modular independence and generator matrices for codes over Zm, Des. Codes. Cryptogr. 50 (2009), 147–162. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr