Korean J. Math.  Vol 26, No 4 (2018)  pp.701-708
DOI: https://doi.org/10.11568/kjm.2018.26.4.701

Generalized normality in ring extensions involving amalgamated algebras

Tae In Kwon, Hwankoo Kim


In this paper, seminormality and $t$-closedness in ring extensions involving amalgamated algebras are studied. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively such that $J$ is contained in the conductor of $R$ in $T$. Assume that $T$ is integral over $R$. Then it is shown that $(R \bowtie I, T \bowtie J)$ is a seminormal (resp., $t$-closed) pair if and only if $(R, T)$ is a seminormal (resp., $t$-closed) pair.


semi normal (pair); $t$-closed (pair); amalgamated algebra

Subject classification

13F45, 13B10, 13B22.


Changwon National University

Full Text:



M. Chhiti and N. Mahdou, Some homological properties of amalgamated dupli- cation of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), 507–515. (Google Scholar)

M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson, editors. Com- mutative Algebra and Its Applications. Berlin, Walter de Gruyter, 2009, pp. 241–252. (Google Scholar)

M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), 1633–1641. (Google Scholar)

D. Dobbs and J. Shapiro, Normal pairs with zero-divisors, J. Algebra Appl. 10 (2011), 335–356. (Google Scholar)

T.S. Long, Ring Extensions Involving Amalgamated Duplications, Ph.D. Thesis, George Mason university, 2014. (Google Scholar)

N. Onoda, T. Sugatani, and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247–256. (Google Scholar)

G. Picavet and M. Picavet-L’Herniitte, Morphismes t-clos, Commun. Algebra, 21 (1993), 179–219. (Google Scholar)

G. Picavet and M. Picavet-L’Herniitte, Anneaux t-clos, Commun. Algebra, 23 (1995), 2643–2677. (Google Scholar)

M. Picavet-L’Hermitte, t-closed pairs, in: P.-J. Cahen, M. Fontana, E. Houston, S.-E. Kabbaj, editors. Commutative Ring Theory. Lect. Notes Pure Appl. Math. 185, New York, Dekker, 1996, pp. 401-415. (Google Scholar)

R.G. Swan, On seminormality, J. Algebra 67 (1980), 210–229. (Google Scholar)

S. Visweswaran, Some t-closed pairs, Commun. Algebra 29 (10) (2001), 4425–4435. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr