Korean J. Math.  Vol 27, No 1 (2019)  pp.81-92
DOI: https://doi.org/10.11568/kjm.2019.27.1.81

The stability of generalized reciprocal-negative Fermat's equations in quasi-$\beta$-normed spaces

DognSeung Kang, Hoewoon Kim


We introduce a reciprocal-negative Fermat's equation generalized with constants coefficients and investigate its stability in a quasi-$\beta$-normed space.


Stability, Functional equations, Reciprocal-negative Fermat's Equation, Quasi-$\beta$-normed spaces

Subject classification

39B52, 39B82


Full Text:



T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66. (Google Scholar)

J.-H. Bae and W.-G. Park, On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C∗−algebra, J. Math. Anal. Appl. 294 (2004), 196–205. (Google Scholar)

Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, (2000). (Google Scholar)

P. W. Cholewa, Remarks on the stability of functional equations, Aequationes. Math. 27 (1984), 76–86. (Google Scholar)

S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. (Google Scholar)

Z. Gajda, On the stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431–434. (Google Scholar)

P. Gˇavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. (Google Scholar)

D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. (Google Scholar)

J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society, 40 (4) (2003), 565–576. (Google Scholar)

R. Ger, Tatra Mt. Math. Publ. 55 (2013), 67–75. (Google Scholar)

S.M. Jung, A Fixed Point Approach to the Stability of the Equation f(x+y)=f(x)f(y))/((f(x)+f(y)), The Australian Journal of Math. Anal. and Appl. Vol. 6 (1) (2009), 1–6 (Google Scholar)

Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. (2005), 264–284. (Google Scholar)

K.-W. Jun and H.-M. Kim, On the stability of Euler-Lagrange type cubic functional equations in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007), 1335– 1350. (Google Scholar)

K. Jun and H. Kim, Solution of Ulam stability problem for approximately bi-quadratic mappings and functional inequalities, J. Inequal. Appl. 10 (4) (2007), 895–908 (Google Scholar)

Y.-S. Lee and S.-Y. Chung, Stability of quartic functional equations in the spaces of generalized functions, Adv. Diff. Equa. (2009), 2009: 838347 (Google Scholar)

R. Kadisona and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249–266. (Google Scholar)

H.-M. Kim,On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358–372. (Google Scholar)

D. Kang and H.B. Kim, On the stability of reciprocal-negative Fermat’s Equations in quasi-β-normed spaces, preprint (Google Scholar)

B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74 (1968), 305–309. (Google Scholar)

P. Narasimman, K. Ravi and Sandra Pinelas, Stability of Pythagorean Mean Functional Equation, Global Journal of Mathematics 4 (1) (2015), 398–411 (Google Scholar)

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. (Google Scholar)

Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284. (Google Scholar)

Th. M. Rassias, P. Sˇemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338. (Google Scholar)

Th. M. Rassias, K. Shibata, Variational problem of some quadratic functions in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253. (Google Scholar)

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 (2) (1999) 243–252. (Google Scholar)

J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992) 185–190. (Google Scholar)

J. M. Rassias, H.-M. Kim Generalized Hyers.Ulam stability for general additive functional equations in quasi-β-normed spaces, J. Math. Anal. Appl. 356 (2009), 302–309. (Google Scholar)

K. Ravi and B.V. Senthil Kumar Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global Journal of App. Math. and Math. Sci. 3(1-2), Jan-Dec 2010, 57-79. (Google Scholar)

S. Rolewicz, Metric Linear Spaces, Reidel/PWN-Polish Sci. Publ., Dordrecht, (1984). (Google Scholar)

I.A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979 (in Romanian). (Google Scholar)

F. Skof, Propriet`a locali e approssimazione di operatori,Rend. Semin. Mat. Fis. Milano 53 (1983) 113–129. (Google Scholar)

S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960). (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr