Korean J. Math.  Vol 27, No 3 (2019)  pp.613-627
DOI: https://doi.org/10.11568/kjm.2019.27.3.613

Edge Szeged indices of Benzene ring

Abdul Qudair Baig, Muhammad Naeem, Muhammad Mushtaq, Wei Gao


Consider a connected molecular graph $G=(V,E)$ where $V$ is the set of vertices and $E$ is the set of edges. In $G$, vertices represent the atoms and edges represent the covalent bonds between atoms. In graph $G$, every edge (say) $e=uv$ will be connected by two atoms $u$ and $v$. The edge Szeged index is a topological index which has been introduced by  Ivan Gutman. In this paper, we have computed edge Szeged indices of a hydrocarbon family called Benzene ring and is denoted by $(BR)_{n\times n}$.


Edge Szeged index, Padmakar Iven index, Geometric Arithmetic index, Mostar index, Benzene ring

Subject classification



Full Text:



K. Ch. Dasa, I. Gutmanb, and B. Furtulab, Survey on Geometric–Arithmetic Indices of Graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), 595– 644 (Google Scholar)

A. Das, G. Domotor, I. Gutman, S. Joshi, S. Karmarkar, D. Khaddar, T. Khaddar, P.V. Khadikar, L. Popovic, N.S. Sapre, N. Sapre, and A. Shirhatti, A Comparative Study of the Wiener, Schultz and Szeged Indices of Cycloalkanes, J. Serb. Chem. Soc. 62 (1997), 235–239. (Google Scholar)

H. Deng and J. Hou, PI indices of nanotubes SC4C8[q; 2p] covering by C4 and C8, MATCH Commun. Math. Comput. Chem. 57, (2007), 503–516. (Google Scholar)

A. A. Dobrynin, I. Gutman, S. Klavzar, and P. Zegiret, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247–294. (Google Scholar)

T. Doslic, I. Martinjak, R. Skrekovski, S. T. Spuzevic, and I. Zubac, Mostar index, J. Math. Chem. 56 (2018), 2995–3013. (Google Scholar)

M. Eliasi and B. Taeri, Szeged index of armchair polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 59 (2008), 437–450. (Google Scholar)

I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008), 263–266. (Google Scholar)

I. Gutman,Y. N. Yeh, S. L. Lee, and Y. L. Luo, Some Recent Results in the Theory of the Wiener Number, Indian J. Chem. 1993, 32A, 651–661 (Google Scholar)

I. Gutman and J.H. Potgieter, Wiener Index and Intermolecular Forces, J. Serb.Chem. Soc. 62 (1997), 185–192. (Google Scholar)

A. Heydari and B. Taeri, Szeged index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem. 57 (2007), 463–477. (Google Scholar)

A. Iranmanesh and O. Khormali, Szeged index of HAC5C7[r,p] nanotubes, J. Comput. Theor. Nanosci., in press. (Google Scholar)

S. Karmarkar, S. Karmarkar, S. Joshi, A. Das, and P.V Khadikar, Novel Application of Wiener vis-a-vis Szeged Indices in Predicting Polychlorinated Biphenyls in the Environment, J. Serb. Chem. Soc. 62 (1997), 227–234. (Google Scholar)

P.V. Khadikar, S. Karmarkar, S. Joshi, and I. Gutman, Estimation of the Protonation Constants of Salicylhydroxamic Acids by Means of the Wiener Topological Index, J. Serb. Chem. Soc. 61 (1996), 89–95. (Google Scholar)

H. Wiener, Stractural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr