Korean J. Math.  Vol 27, No 2 (2019)  pp.505-514
DOI: https://doi.org/10.11568/kjm.2019.27.2.505

On estimation of uniform convergence of analytic functions by $(p,q)$-Bernstein operators

M. Mursaleen, Faisal Khan, Mohd Saif, Abdul Hakim Khan


In this paper we study the approximation properties of a continuous function by the sequence of $(p,q)$-Bernstein operators for $q>p>1$. We obtain bounds of {$(p,q)$-}Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk $\{z:\left\vert z\right\vert \leq \rho \}$, then $ B_{p,q}^{n}(g;z)\rightarrow g(z)$ ($n\rightarrow \infty $) uniformly on any compact set in the given disk $\{z:\left\vert z\right\vert \leq \rho \},$ ${ \rho >0}$.


$(p,q)$-integers; $% (p,q)$-Bernstein operators; divided difference; analytic function; uniform convergence.

Subject classification

41A65, 47A58, 30H05


Full Text:



T. Acar, (p,q)-generalization of Sz ́a sz-Mirakyan operators, Math. Methods Appl. Sci. 9 (10) (2016), 2685–2695. (Google Scholar)

T. Acar, A. Aral and S.A. Mohiuddine, Approximation by bivariate (p,q)- Bernstein Kantorovich operators, Iranian Jour. Sci. Techn., Trans A: Science, 42 (2) (2016), 655–662. (Google Scholar)

T. Acar and A. Mohiuddine, On Kantorovich modification of (p,q)-Baskakov operators, J. Inequal. Appl. (2016), 2016: 98. (Google Scholar)

S.N. Bernstein, D ́emonstration du th ́eor`eme de Weierstrass fond ́ee sur la calcul des probabilit ́es, Commun. Soc. Math. Charkow S ́er. 13 (1912), 1–2. (Google Scholar)

H. Bin Jebreen, M. Mursaleen and Ambreen Naaz, Approximation by quaternion (p, q)-Bernstein polynomials and Voronovskaja type result on compact disk, Adv. Difference Equ. 2018 (2018), 448. (Google Scholar)

S.G. Gal, Approximation by complex q-Lorentz polynomial, q > 1, Mathematica (Cluj) 54(77) (1) (2012). (Google Scholar)

U. Kadak, On weighted statistical convergence based on (p,q)-integers and related approximation theorems for functions of two variables, J. Math. Anal. Appl. 443 (2) (2016), 752–764. (Google Scholar)

U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p,q)-gamma function and its applications to approximation theorems, J. Math. Anal. Appl., 448 (2) (2017), 1633–1650. (Google Scholar)

U. Kadak, V.N. Mishra and S. Pandey, Chlodowsky type generalization of (p, q)- Szasz operators involving Brenke type polynomials, Revista de la Real Academia de Ciencias Exactas, Fi`Isicas y Naturales. Serie A, Matema`Iticas (2017), DOI: 10.1007/s13398-017-0439-y. (Google Scholar)

P.P. Korovkin, Convergence of linear positive operator in the space of contineous function. Dokl. Akad. Nauk. Russian. SSSR (N.S.) 90 (1953), 961–964. (Google Scholar)

A. Lupas, A q-analogue of the Bernstein operators, seminar on numerical and statistical calculus, University of Cluj-Napoca (1987), 85–92. (Google Scholar)

V.N. Mishra and S. Pandey, On Chlodowsky variant of (p,q)-Kantorovich– Stancu–Schurer operators, Int. J. Anal. Appl. 11 (1) (2016), 28–39. (Google Scholar)

V.N. Mishra and S. Pandey, On (p,q) Baskakov–Durrmeyer–Stancu operators, Adv.Appl.Clifford Algebra 27 (2) (2017), 1633–1646. (Google Scholar)

M. Mursaleen and M. Ahasan, The Dunkl generalization of Stancu type q-Sz ́asz- Mirakjan-Kantorovich operators and some approximation results, Carpathian J. Math., 34(3) (2018), 363-370. (Google Scholar)

M. Mursaleen, K.J. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874–882. Erratum: Appl. Math. Comput. 278 (2016), 70–71. (Google Scholar)

M. Mursaleen, F. Khan and A. Khan, Approximation by (p,q)-Lorentz polynomial on a compact disk, Complex. Anal. Oper. Theory, 10 (8) (2016), 1725–1740. (Google Scholar)

M. Mursaleen, Md. Nasiruzzaman, F. Khan and A. Khan, (p, q)-analogue of di- vided difference and Bernstein operators, J. Nonlinear. Funct. Anal. 2017 (2017), Article ID 25. (Google Scholar)

M. Mursaleen, Ambreen Naaz and Asif Khan, Improved approximation and error estimations by King type (p, q)-Szasz-Mirakjan-Kantorovich operators, Appl. Math. Comput. 348 (2019), 175–185. (Google Scholar)

M. Mursaleen, S. Rahman and A.H. Alkhaldi, Convergence of iterates of q-Bernstein and (p,q)-Bernstein operators and the Kelisky-Rivlin type theorem, Filomat 32 (12) (2018), (to appear). (Google Scholar)

S. Ostrovska, q-Bernstein polynomial of the Cauchy kernel, Appl. Math. Comput., 198 (1) (2008), 261–270. (Google Scholar)

S. Ostrovska, q-Bernstein polynomial and their iterates, Jour. Approx. Theory 123 (2003), 232–255. (Google Scholar)

G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511–518. (Google Scholar)

G.M. Phillips, A generalization of the Bernstein polynomial based on the q-integers. ANZIAMZ, 42 (2000), 79–86 . (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr