Korean J. Math.  Vol 28, No 2 (2020)  pp.391-403
DOI: https://doi.org/10.11568/kjm.2020.28.2.391

Almost $\zeta$- contraction on $M$- metric space

M. Pitchaimani, K. Saravanan

Abstract


In this paper, we initiate the concept of almost $\zeta $- contractions via Simulation functions to find  fixed points on $M$- metric spaces, and prove some related fixed points results for such mappings. Moreover an illustration is provided to show the applicability of our obtained results.


Keywords


Almost ζ- contraction, M-metric space, almost contraction.

Subject classification

47H10, 54H25

Sponsor(s)



Full Text:

PDF

References


Mehdi Asadi, Erdal Karapinar and Peyman Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, Journal of Inequalities and Applications 397 (2014), 150–163. (Google Scholar)

Matthews.S, Partial metric topology, Ann. N.Y. Acad. Sci. 728 (1994),183–197. (Google Scholar)

Huseyin Isik, Nurcan Bilgili Gungor, Choonkil Park and Sun Young Jang, Fixed point Theorems for Almost ζ contractions with an Application, MDPI (2018) 6,37. (Google Scholar)

Pitchaimani M., Ramesh Kumar D., Some common fixed point theorems using implicit relation in 2-Banach spaces, Surv. Math. Appl. 10 (2015), 159-168. (Google Scholar)

Pitchaimani M., Ramesh Kumar D., Common and coincidence fixed point theorems for asymptotically regular mappings in 2-Banach Space, Nonlinear Funct. Anal. Appl. 21 (1) (2016), 131–144. (Google Scholar)

Pitchaimani M., Ramesh Kumar D., On construction of fixed point theory under implicit relation in Hilbert spaces, Nonlinear Funct. Anal. Appl. 21 (3) (2016), 513–522. (Google Scholar)

Pitchaimani M., Ramesh Kumar D., On Nadler type results in ultrametric spaces with application to well-posedness, Asian-European Journal of Mathematics. 10 (4) (2017), 1750073(1-15). DOI: 10.1142/S1793557117500735. (Google Scholar)

Pitchaimani M., Ramesh Kumar D., Generalized Nadler type results in ultrametric spaces with application to well-posedness, Afr. Mat. 28 (2017), 957–970. (Google Scholar)

Rakotch E., A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465. (Google Scholar)

Ramesh Kumar D., Pitchaimani M., Set-valued contraction mappings of Preˇsi ́c- Reich type in ultrametric spaces, Asian-European Journal of Mathematics. 10 (4) (2017), 1750065 (1–15) DOI: 10.1142/S1793557117500656. (Google Scholar)

Ramesh Kumar D., Pitchaimani M., A generalization of set-valued Preˇsi ́c-Reich type contractions in ultrametric spaces with applications, J. Fixed Point Theory Appl. (2016), DOI: 10.1007/s11784-016-0338-4. (Google Scholar)


Refbacks



ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr